
Centaurus Distributed Cloud
Infrastructure

Futurewei Cloud Lab.

A Deep-Dive

2

Centaurus Distributed Cloud Infrastructure Overview

❑ Project Centaurus is an open source (LF) platform

targeted towards building unified and highly scalable

public or private distributed cloud infrastructure.

❑ Aims to meet the challenges for new types of

workloads such as AI and 5G applications landscape.

❑ Offers enterprises the hyper-scaler like capabilities

that dramatically changes the economics of enterprise

IT.

❑ Key underlying technology pillars of Centaurus

project:
❑ Arktos – a large scale cloud compute

❑ Mizar – high scale and high performant cloud

networking

❑ Fornax – Autonomous and flexible edge computing

❑ Alnair – Intelligent platform for AI workloads

Arktos Compute

3

4

Arktos Compute Layer Overview

❑ Arktos is an open source project designed for large-scale cloud

infrastructure.

❑ Arktos was evolved from the Kubernetes codebase and features a lot

of similar API objects — like pods and replica sets.

❑ Arktos introduces core design changes in order to enable the following

key features:
❑ Unified cloud infrastructure resource support

❑ High throughput and low latency

❑ Multi-tenancy support

5

Arktos Architectural Overview

6

Arktos Hyper-Scaler Cloud Scalability

Deployment View

❑ Public cloud level scalability — it

aims to support 300,000 hosts per

region and 100,000 hosts per

cluster.

❑ All the control plane components

can scale-out and are highly

available — tenant workloads are

partitioned

7

Arktos Multi-Tenancy

8

Arktos Unified Runtime Orchestration

❑ Contemporary fragmented

orchestration stacks for containers

and VMs introduces resource pool in-

efficiencies, duplicated components,

increased maintenance and

operational cost.

❑ Arktos introduces native support of

VM, in addition to the mature

container support inherited from

Kubernetes — a unified resource

pool.

Mizar Networking

9

❑ Current flow-based programming solutions are not scalable and

have a multitude of issues and quirks.

❑ Time to provision ports increases significantly as the number of

ports increases.

❑ High CPU utilization during flow-parsing.

❑ Packets traverse multiple network stacks on the same host.

❑ Provisioning time of a new workload depends on the number of

workloads already existing in the system.

10

Mizar: Problems with programmers thinking in flow-rules

Mizar Networking Layer – XDP

❑ Safely and Dynamically modify the NIC device driver

behavior without packet processing interruption

❑ Process Packets before delivering it to the stack

❑ PASS, TX, REDIRECT, DROP

❑ API interfaces that programmers understand!

❑ Does not require dedicated CPUs and Off-loadable to

SmartNICs

❑ Small programs 4K ebpf instructions!

Enter eXpress Data Path (XDP) – A Linux Kernel Superpower

11

Mizar Networking Architecture

❑ One XDP Program attached to NIC

❑ Processes all ingress packets

❑ One XDP program attached to the veth-

pair of a container

❑ Process egress packets from that

container

❑ Expose RPC interface to the

management plane

❑ Load/Unload the XDP programs

❑ Push any form of configuration to

ebpf maps

eth (droplet)

Transit

XDP

VM, Container,

Or Legacy

network service

veth

veth pair

Transit

Agent

XDP

Transit

Daemon

(User space)

Management Plane

User Space

Kernel Space

EBPF maps

eth (droplet)

Transit

XDP

eth (droplet)

Transit

XDP

Inside a Mizar Host

12 Logical Architecture of Mizar

Mizar Networking Layer – a summary

❑ The flow-programming model is great for programmable switches but not scalable

for multi-tenant cloud networks

❑ Tremendous Provisioning throughput & Run-time CPU/Memory performance gains

❑ Create an extensible plugin framework for cloud networking

❑ Unify the network data plane for VMs, Containers, Serverless and other workload

types

❑ Label-based Network Policy enforcement

❑ Programming the SmartNICs with small, safe, and dynamically loadable programs

enable the management-plane to even higher scale overlay networks

13

Fornax Edge Computing

14

Fornax Edge Computing – an Overview

❑ Fornax is an open source edge-computing framework for managing compute

resources on the edge environment.

❑ Fornax is designed to solve some of the key edge computing challenges such as

limited computing resources, heterogeneous resource types, layered topology,

unreliable network, and long latency.

❑ With Fornax, end-user's edge application workloads could be easily deployed in a

distributed hierarchical edge environment with topologies that best matches the

physical and logical structure.

❑ Fornax also offers high performance virtualized networking for workload

communication within and between edge clusters.

15

Fornax Edge Computing – Key Features

❑ Computing nodes and clusters on the edge: Both computing nodes and full-

fledged clusters can run on the edge.

❑ Hierarchical topology: Edge clusters can be structured in multi-layer tree-like

topologies, providing best mapping to end-user scenarios.

❑ Flexible flavors: Supports multiple flavors of clusters on the edge, e.g. Arktos, K8s

and K3s.

❑ Edge networking: Multi-tenant edge cluster networking (Supporting concepts like

VPC, Subnet) and high performance inter-cluster communication.

16

Fornax Edge Computing – Design Overview

❑ Fornax models edge as an m-ary

tree where an Arktos control plane sits

at the root of the tree in the cloud, and

leaf tree nodes represent computing

nodes on the edge.

❑ The sub-trees in the m-ary tree are

standalone clusters, and the roots of

the sub-trees are control planes for

edge clusters.

❑ As usual with Arktos clusters, there are

also compute nodes in the cloud

managed by the root level Arktos

control plane.

17

https://en.wikipedia.org/wiki/M-ary_tree
https://github.com/CentaurusInfra/arktos

Alnair AI

18

Alnair Vision

❑ Building an intelligent platform to improve AI workloads efficiency.

❑ AI workloads will be the critical/dominant workloads for cloud and edge computing.

❑ Current cloud/edge systems leverage existing hardware/software architecture to

support new AI workloads, which limits the capability of AI training/inferencing and

also increases the model serving cost.

❑ More efficient and more intelligent hardware/software frameworks and architectures

are needed to support AI workloads.

❑ Focus on the resources management aspects, to analyze and schedule AI

workloads on existing/new systems, with intelligent methods.

❑ We also explore new architecture to orchestrate heterogenous resources, and new

service model to facilitate AI workloads.

19

Alnair – Key Features

❑ Elastic platform with self-learning capability
❑ Elastic training, dynamic GPU allocation

❑ GPU utilization profiling, precise resource management

❑ GPU fine-grained sharing, optimized resource utilization

❑ Autonomous scheduler, continuous scheduling decision learning, policy improvement

❑ Optimized ML framework
❑ Parallelism (data/model/pipeline) Optimization

❑ Hyperparameters auto tuning

20

Transitioning to Centaurus 2.0

(Distributed Cloud Infrastructure)

21

Centaurus Edge Serverless Platform（Fornax Serverless ）

Centaurus Container Virtualization (Quark Container Engine)

Centaurus Regionless Computing Platform (Arktos 2.0)

Distributed Data and
Message Bus

Geo-Distributed
KV Data Store

Universal Virtual
Network (U-VPC)

Centaurus Regionless Computing

Goals & challenges

➢ New model to use cloud – from resource-based

to application-based cloud (cloud native 2.0)

➢ Manage 2 million+ compute nodes from big,

small & edge data centers as global resources

➢ Distributed scheduling algorithm and scheduler

architecture to scale to 10K RPS throughput.

➢ Design geo-distributed data consistent KV store

to manage 100 millions application instances

➢ Large scale virtual network (VPC) to provision &

manage 1 million+ application/vm instances

Centaurus 2.0

Global Resource
Management Service

New Application
Model and API

Global Distributed
Scheduler

2022/23 Cloud Compute Project – Centaurus 2.0

Centaurus Edge & Serverless Computing

Goals & challenges

➢ Extreme low latency (<100 ms) for starting

application instance at edge & auto scale to

handle burst requests

➢ The platform itself must be very Lightweight –

use minimum resources (less than 10GM/3CPU

to manage 5K application instances

➢ Multi-tenant edge computing clusters with

strong computing/networking isolation.

➢ High performance scheduling algorithm (<10ms)

to allocate application instance onto a node

Centaurus Container Runtime Engine

Goals & challenges

➢ High performance and secure container runtime – 3X Kata & gVisor in RPS

& Throughput

➢ Light weighted container – memory overhead 1/3 of gVisor and 1/15 of

Kata container

➢ RDMA based network communication & NVMe/NVMeOF based direct

device access – 30% Performance Gain

22

Centaurus 2.0 – Quark Secure Container (V1.0)

Centaurus Container Runtime Engine

Goals & challenges

➢ High performance and secure container runtime – 3X Kata & gVisor in RPS

& Throughput

➢ Light weighted container – memory overhead 1/3 of gVisor and 1/15 of

Kata container

➢ RDMA based network communication & NVMe/NVMeOF based direct

device access – 30% Performance Gain

High Level Design Points

➢ System Call virtualization – Reimplement 80% system calls

➢ QCall: Share memory-based communication between QKernel

and QVisor

➢ IO-Uring: IO data plane between QKernel and host Kernel

23

Cloud AI – Alnair Platform

Project Background

➢ Serving AI workloads is one of the most important missions for next generation cloud platform

➢ Cloud platform needs to be tailored based on the special characteristics of AI workloads, e.g., parallel computation and

heavy data ingestion in training, low latency in inference

➢ AI platform touches various domain, e.g., hardware accelerators, data storage/pipeline, resource management, ML

framework, etc.

➢ This year focus on (platform building blocks, small and medium size training jobs)

▪ GPU sharing and profiling

▪ Intelligent scheduling

▪ Data orchestration / cache for AI jobs

24

Who We Are

● A small group of people elected from member groups and projects

● The governing body that oversees Centaurus project execution from technical perspective

● Operating under the TSC Charter from Linux Foundation

● Currently 7 TSC members

● We also have:

○ Advisory board

○ Sub-committee of marketing and outreaching

25

What We Do

● Coordinating the technical direction of the projects from the four Special Interest Groups (SIGs)

● Approving sub-projects and removing sub-projects

● Cross-project technical issues and requirements

● Establishing community norms, workflows and technical policies

● Coordinating marketing, events, or external communications

26

How We Execute

● Principles: Open, public and easily accessible

● TSC meets regularly on the last Tuesday of the month. TSC meetings are open and public,

everyone can dial in. (but only TSC members can vote)

● Topics are proposed before a meeting in a public document

● Public email groups and slack channels are used for offline discussions

● All TSC decisions, meeting notes and presented material are publicly accessible to everyone

27

Resources

● TSC Repo: https://github.com/CentaurusInfra/tsc

● TSC Email Groups: centaurus-tsc@googlegroups.com

● TSC Meeting Notes:

https://docs.google.com/document/d/1nfGJ_9nudQWjbEx2f21_kkf15quuw7fOQaqF_EtQc-

I/edit?usp=sharing

Welcome to Join us!

28

https://github.com/CentaurusInfra/tsc
https://docs.google.com/document/d/1nfGJ_9nudQWjbEx2f21_kkf15quuw7fOQaqF_EtQc-I/edit?usp=sharing

