
Centaurus Distributed Cloud 
Infrastructure

Futurewei Cloud Lab.

A Deep-Dive



2

Centaurus Distributed Cloud Infrastructure Overview

❑ Project Centaurus is an open source (LF) platform 

targeted towards building unified and highly scalable 

public or private distributed cloud infrastructure.

❑ Aims to meet the challenges for new types of 

workloads such as AI and 5G applications landscape.

❑ Offers enterprises the hyper-scaler like capabilities 

that dramatically changes the economics of enterprise 

IT.

❑ Key underlying technology pillars of Centaurus 

project:
❑ Arktos – a large scale cloud compute

❑ Mizar – high scale and high performant cloud 

networking

❑ Fornax – Autonomous and flexible edge computing

❑ Alnair – Intelligent platform for AI workloads



Arktos Compute
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Arktos Compute Layer Overview

❑ Arktos is an open source project designed for large-scale cloud 

infrastructure.

❑ Arktos was evolved from the Kubernetes codebase and features a lot 

of similar API objects — like pods and replica sets.

❑ Arktos introduces core design changes in order to enable the following 

key features:
❑ Unified cloud infrastructure resource support

❑ High throughput and low latency

❑ Multi-tenancy support



5

Arktos Architectural Overview
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Arktos Hyper-Scaler Cloud Scalability

Deployment View

❑ Public cloud level scalability — it 

aims to support 300,000 hosts per 

region and 100,000 hosts per 

cluster.

❑ All the control plane components 

can scale-out and are highly 

available — tenant workloads are 

partitioned
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Arktos Multi-Tenancy
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Arktos Unified Runtime Orchestration

❑ Contemporary fragmented 

orchestration stacks for containers 

and VMs introduces resource pool in-

efficiencies, duplicated components, 

increased maintenance and 

operational cost.

❑ Arktos introduces native support of 

VM, in addition to the mature 

container support inherited from 

Kubernetes — a unified resource 

pool.



Mizar Networking
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❑ Current flow-based programming solutions are not scalable and 

have a multitude of issues and quirks.

❑ Time to provision ports increases significantly as the number of 

ports increases.

❑ High CPU utilization during flow-parsing.

❑ Packets traverse multiple network stacks on the same host.

❑ Provisioning time of a new workload depends on the number of 

workloads already existing in the system.
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Mizar: Problems with programmers thinking in flow-rules



Mizar Networking Layer – XDP

❑ Safely and Dynamically modify the NIC device driver 

behavior without packet processing interruption

❑ Process Packets before delivering it to the stack

❑ PASS, TX, REDIRECT, DROP

❑ API interfaces that programmers understand!

❑ Does not require dedicated CPUs and Off-loadable to 

SmartNICs

❑ Small programs 4K ebpf instructions!

Enter eXpress Data Path (XDP) – A Linux Kernel Superpower

11



Mizar Networking Architecture

❑ One XDP Program attached to NIC 

❑ Processes all ingress packets

❑ One XDP program attached to the veth-

pair of a container

❑ Process egress packets from that 

container

❑ Expose RPC interface to the 

management plane

❑ Load/Unload the XDP programs

❑ Push any form of configuration to 

ebpf maps
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Mizar Networking Layer – a summary

❑ The flow-programming model is great for programmable switches but not scalable 

for multi-tenant cloud networks

❑ Tremendous Provisioning throughput & Run-time CPU/Memory performance gains

❑ Create an extensible plugin framework for cloud networking

❑ Unify the network data plane for VMs, Containers, Serverless and other workload 

types

❑ Label-based Network Policy enforcement

❑ Programming the SmartNICs with small, safe, and dynamically loadable programs 

enable the management-plane to even higher scale overlay networks
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Fornax Edge Computing
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Fornax Edge Computing – an Overview

❑ Fornax is an open source edge-computing framework for managing compute 

resources on the edge environment.

❑ Fornax is designed to solve some of the key edge computing challenges such as 

limited computing resources, heterogeneous resource types, layered topology, 

unreliable network, and long latency.

❑ With Fornax, end-user's edge application workloads could be easily deployed in a 

distributed hierarchical edge environment with topologies that best matches the 

physical and logical structure.

❑ Fornax also offers high performance virtualized networking for workload 

communication within and between edge clusters.
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Fornax Edge Computing – Key Features

❑ Computing nodes and clusters on the edge: Both computing nodes and full-

fledged clusters can run on the edge.

❑ Hierarchical topology: Edge clusters can be structured in multi-layer tree-like 

topologies, providing best mapping to end-user scenarios.

❑ Flexible flavors: Supports multiple flavors of clusters on the edge, e.g. Arktos, K8s 

and K3s.

❑ Edge networking: Multi-tenant edge cluster networking (Supporting concepts like 

VPC, Subnet) and high performance inter-cluster communication.
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Fornax Edge Computing – Design Overview

❑ Fornax models edge as an m-ary

tree where an Arktos control plane sits 

at the root of the tree in the cloud, and 

leaf tree nodes represent computing 

nodes on the edge.

❑ The sub-trees in the m-ary tree are 

standalone clusters, and the roots of 

the sub-trees are control planes for 

edge clusters.

❑ As usual with Arktos clusters, there are 

also compute nodes in the cloud 

managed by the root level Arktos 

control plane.
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https://en.wikipedia.org/wiki/M-ary_tree
https://github.com/CentaurusInfra/arktos


Alnair AI
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Alnair Vision

❑ Building an intelligent platform to improve AI workloads efficiency.

❑ AI workloads will be the critical/dominant workloads for cloud and edge computing.

❑ Current cloud/edge systems leverage existing hardware/software architecture to 

support new AI workloads, which limits the capability of AI training/inferencing and 

also increases the model serving cost.

❑ More efficient and more intelligent hardware/software frameworks and architectures 

are needed to support AI workloads.

❑ Focus on the resources management aspects, to analyze and schedule AI 

workloads on existing/new systems, with intelligent methods.

❑ We also explore new architecture to orchestrate heterogenous resources, and new 

service model to facilitate AI workloads.
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Alnair – Key Features

❑ Elastic platform with self-learning capability
❑ Elastic training, dynamic GPU allocation

❑ GPU utilization profiling, precise resource management

❑ GPU fine-grained sharing, optimized resource utilization

❑ Autonomous scheduler, continuous scheduling decision learning, policy improvement

❑ Optimized ML framework
❑ Parallelism (data/model/pipeline) Optimization

❑ Hyperparameters auto tuning
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Transitioning to Centaurus 2.0

(Distributed Cloud Infrastructure)
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Centaurus Edge Serverless Platform（Fornax Serverless ）

Centaurus Container Virtualization ( Quark Container Engine)

Centaurus Regionless Computing Platform (Arktos 2.0)

Distributed Data and 
Message Bus

Geo-Distributed 
KV Data Store

Universal Virtual 
Network (U-VPC)

Centaurus Regionless Computing

Goals & challenges

➢ New model to use cloud – from resource-based 

to application-based cloud (cloud native 2.0)

➢ Manage 2 million+ compute nodes from big, 

small & edge data centers as global resources

➢ Distributed scheduling algorithm and scheduler 

architecture to scale to 10K RPS throughput.

➢ Design geo-distributed data consistent KV store 

to manage 100 millions application instances 

➢ Large scale virtual network (VPC) to provision & 

manage 1 million+ application/vm instances

Centaurus 2.0

Global Resource 
Management Service

New Application 
Model and API

Global Distributed 
Scheduler

2022/23 Cloud Compute Project – Centaurus 2.0

Centaurus Edge & Serverless Computing

Goals & challenges

➢ Extreme low latency (<100 ms) for starting 

application instance at edge & auto scale to 

handle burst requests 

➢ The platform itself must be very Lightweight –

use minimum resources (less than 10GM/3CPU 

to manage 5K application instances

➢ Multi-tenant edge computing clusters with 

strong computing/networking isolation.

➢ High performance scheduling algorithm (<10ms) 

to allocate application instance onto a node

Centaurus Container Runtime Engine

Goals & challenges

➢ High performance and secure container runtime – 3X Kata & gVisor in RPS 

& Throughput 

➢ Light weighted container – memory overhead 1/3 of gVisor and 1/15 of 

Kata container 

➢ RDMA based network communication & NVMe/NVMeOF based direct 

device access – 30% Performance Gain
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Centaurus 2.0 – Quark Secure Container (V1.0)

Centaurus Container Runtime Engine

Goals & challenges

➢ High performance and secure container runtime – 3X Kata & gVisor in RPS 

& Throughput 

➢ Light weighted container – memory overhead 1/3 of gVisor and 1/15 of 

Kata container 

➢ RDMA based network communication & NVMe/NVMeOF based direct 

device access – 30% Performance Gain

High Level Design Points

➢ System Call virtualization – Reimplement 80% system calls

➢ QCall: Share memory-based communication between QKernel

and QVisor

➢ IO-Uring: IO data plane between QKernel and host Kernel
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Cloud AI – Alnair Platform

Project Background

➢ Serving AI workloads is one of the most important missions for next generation cloud platform

➢ Cloud platform needs to be tailored based on the special characteristics of AI workloads, e.g., parallel computation and 

heavy data ingestion in training, low latency in inference

➢ AI platform touches various domain, e.g., hardware accelerators, data storage/pipeline, resource management, ML 

framework, etc.

➢ This year focus on (platform building blocks, small and medium size training jobs)

▪ GPU sharing and profiling

▪ Intelligent scheduling 

▪ Data orchestration / cache for AI jobs
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Who We Are

● A small group of people elected from member groups and projects

● The governing body that oversees Centaurus project execution from technical perspective

● Operating under the TSC Charter from Linux Foundation

● Currently 7 TSC members

● We also have:

○ Advisory board 

○ Sub-committee of marketing and outreaching
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What We Do

● Coordinating the technical direction of the projects from the four Special Interest Groups (SIGs)

● Approving sub-projects and removing sub-projects

● Cross-project technical issues and requirements

● Establishing community norms, workflows and technical policies

● Coordinating marketing, events, or external communications
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How We Execute

● Principles: Open, public and easily accessible

● TSC meets regularly on the last Tuesday of the month. TSC meetings are open and public, 

everyone can dial in. (but only TSC members can vote)

● Topics are proposed before a meeting in a public document

● Public email groups and slack channels are used for offline discussions

● All TSC decisions, meeting notes and presented material are publicly accessible to everyone
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Resources

● TSC Repo: https://github.com/CentaurusInfra/tsc

● TSC Email Groups: centaurus-tsc@googlegroups.com

● TSC Meeting Notes: 

https://docs.google.com/document/d/1nfGJ_9nudQWjbEx2f21_kkf15quuw7fOQaqF_EtQc-

I/edit?usp=sharing

Welcome to Join us!
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https://github.com/CentaurusInfra/tsc
https://docs.google.com/document/d/1nfGJ_9nudQWjbEx2f21_kkf15quuw7fOQaqF_EtQc-I/edit?usp=sharing

