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SLAs & SLOs

• Service Level Agreements (SLAs) define bounds within which a service 
has to operate

• An SLA consists of one or more Service Level Objectives (SLOs)

• SLO is a “commitment to maintain a particular state of the service in a 
given period” [1]

• SLOs are measurable

• Often limited to simple capacity guarantees, e.g., CPU, response time

• High-level SLOs (e.g., efficiency) would be suitable as business KPIs

[1] A. Keller and H. Ludwig. 2003. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web. Journal of Network and Systems Management
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Polaris

• TypeScript-based framework for building and customizing all three components
• https://polaris-slo-cloud.github.io

• Decoupling of SLOs from elasticity strategies

• Increase the number of possible SLO/elasticity strategy combinations

• Available standalone, integrated into the RAINBOW platform, and (soon) 
integrated into the Centaurus platform

SLO Elasticity StrategyMetric
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https://polaris-slo-cloud.github.io/


Polaris Composed Metrics

• High-level SLOs need high-level metrics
• Not observable directly on system

• Composed Metric = aggregation of multiple lower-level metrics

• Often computed by an external controller and shared through a Metrics Store

• Composed Metric can also be a prediction of future values of another metric
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Predicted metrics controllers

• Adds support for proactive scaling

• Polyglot approach using TypeScript and Python

• Implementation focuses on strengths of developers:
• Polaris users

• AI developers

7



Polaris SLOs

• SLO Controller periodically 
evaluates input metrics to check 
if the SLO is fulfilled or violated

• Triggers a user-configured 
elasticity strategy upon violation

• Easily buildable
• Evaluation loop & triggering of 

elasticity strategy is implemented 
by Polaris

• Only SLO business logic is required
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Polaris Elasticity Strategies
• Modify a workload’s resources, 

instances, and/or configuration 
in response to an SLO violation

• Out of the box
• Horizontal scaling
• Vertical scaling
• Migrate to another node

• Easily buildable
• Custom elasticity strategies for a 

specific workload
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SLO Mapping
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• Target Deployment
• Elasticity Strategy
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• Implemented as Kubernetes CRD
• Analogous mapping type for 

composed metrics



Type Safety
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Polaris as an Ecosystem

• A tool for  service providers, developers and 
consumers:

• Automatic setup of projects and dependencies
• Create Composed Metric Types & Controllers
• Create SLO Mappings & Controllers
• Create Elasticity Strategy types & Controllers
• Use and configure existing SLOs

• Lower entrance barrier for new developers
• DevRel-first approach 
• Easy onboarding => more adopters

• Allows combining Polaris-based components with 
other projects/components in a monorepo

• RAINBOW users can leverage Web UI to configure 
existing SLOs

CLI and Development Containers
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Polaris Demo

Horizontal scaling of a Deployment, based on Resource Efficiency SLO 
computed from metrics from the Google Cluster Data 2011 [2]
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[2] https://research.google/tools/datasets/cluster-workload-traces/
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Resource Efficiency: 
𝑢𝑠𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

https://research.google/tools/datasets/cluster-workload-traces/
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Questions?
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Demo
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Thank you!
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Polaris Framework: https://polaris-slo-cloud.github.io

https://polaris-slo-cloud.github.io/

