
https://rainbow-h2020.eu/

@RainbowH2020

Polaris Framework –
Creating and Enforcing Complex SLOs

Thomas Pusztai

Distributed Systems Group, TU Wien, Austria

June 21, 2022

SLAs & SLOs

• Service Level Agreements (SLAs) define bounds within which a service
has to operate

• An SLA consists of one or more Service Level Objectives (SLOs)

• SLO is a “commitment to maintain a particular state of the service in a
given period” [1]

• SLOs are measurable

• Often limited to simple capacity guarantees, e.g., CPU, response time

• High-level SLOs (e.g., efficiency) would be suitable as business KPIs

[1] A. Keller and H. Ludwig. 2003. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web. Journal of Network and Systems Management

2

Conceptual

Production
Use Today

Polaris

SLO Components

SLO Elasticity StrategyMetric

CPU/
Memory/
Custom

Metrics API

Avg CPU
Horizontal

Scaling

CPU
Usage

Avg CPU
SLO

Horizontal
Elasticity
Strategy

Efficiency
SLO

… …
3

Polaris

• TypeScript-based framework for building and customizing all three components
• https://polaris-slo-cloud.github.io

• Decoupling of SLOs from elasticity strategies

• Increase the number of possible SLO/elasticity strategy combinations

• Available standalone, integrated into the RAINBOW platform, and (soon)
integrated into the Centaurus platform

SLO Elasticity StrategyMetric

4

https://polaris-slo-cloud.github.io/

Polaris Composed Metrics

• High-level SLOs need high-level metrics
• Not observable directly on system

• Composed Metric = aggregation of multiple lower-level metrics

• Often computed by an external controller and shared through a Metrics Store

• Composed Metric can also be a prediction of future values of another metric

5

Resource Efficiency Composed Metric

Efficiency SLO
Controller

Efficiency
Metric Source

Get Efficiency of
Target Workload

Resource
Efficiency
Controller

Composed M.

Raw Metrics

TotalCost
Metric Source

Get TotalCost
of Target

Get TotalCost
of Target Workload

KubeCost-
TotalCost
Controller

Metrics Store

6

Predicted metrics controllers

• Adds support for proactive scaling

• Polyglot approach using TypeScript and Python

• Implementation focuses on strengths of developers:
• Polaris users

• AI developers

7

Polaris SLOs

• SLO Controller periodically
evaluates input metrics to check
if the SLO is fulfilled or violated

• Triggers a user-configured
elasticity strategy upon violation

• Easily buildable
• Evaluation loop & triggering of

elasticity strategy is implemented
by Polaris

• Only SLO business logic is required

8

Polaris Elasticity Strategies
• Modify a workload’s resources,

instances, and/or configuration
in response to an SLO violation

• Out of the box
• Horizontal scaling
• Vertical scaling
• Migrate to another node

• Easily buildable
• Custom elasticity strategies for a

specific workload

9

SLO Mapping

SLO Elasticity
Strategy

Target
Deployment

SLO Mapping

Establishes the relationship between
• SLO (incl. config)
• Target Deployment
• Elasticity Strategy

10

• Implemented as Kubernetes CRD
• Analogous mapping type for

composed metrics

Type Safety

SloOutput

SloTarget

ServiceLevel
Objective

config output
ElasticityStrategy

Configuration

sloOutput

Slo
Configuration

target

Types determined by ServiceLevelObjective Types determined by ElasticityStrategy

Elasticity
Strategy

input

11

Polaris as an Ecosystem

• A tool for service providers, developers and
consumers:

• Automatic setup of projects and dependencies
• Create Composed Metric Types & Controllers
• Create SLO Mappings & Controllers
• Create Elasticity Strategy types & Controllers
• Use and configure existing SLOs

• Lower entrance barrier for new developers
• DevRel-first approach
• Easy onboarding => more adopters

• Allows combining Polaris-based components with
other projects/components in a monorepo

• RAINBOW users can leverage Web UI to configure
existing SLOs

CLI and Development Containers

12

Polaris Demo

Horizontal scaling of a Deployment, based on Resource Efficiency SLO
computed from metrics from the Google Cluster Data 2011 [2]

CPU Usage

Efficiency
SLO

Horizontal
Elasticity
Strategy

Memory Usage

Disk Usage

[2] https://research.google/tools/datasets/cluster-workload-traces/

13

Resource Efficiency:
𝑢𝑠𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

https://research.google/tools/datasets/cluster-workload-traces/

Resource
Efficiency

Composed Metric
Controller

Efficiency
SLO

Controller

Horizontal
Elasticity
Strategy

Controller

Polaris Demo Components

Target
Deployment

Efficiency
SLO Mapping

14

https://rainbow-h2020.eu/

@RainbowH2020

Questions?

15

https://rainbow-h2020.eu/

@RainbowH2020

Demo

16

https://rainbow-h2020.eu/ @RainbowH2020

Thank you!

17

Polaris Framework: https://polaris-slo-cloud.github.io

https://polaris-slo-cloud.github.io/

