
	
	

	

	

The work described in this document has been conducted within the project RAINBOW. This project has received
funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the Grant
Agreement no 871403. This document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.	
	

	

Project	Title	 AN	 OPEN,	 TRUSTED	 FOG	 COMPUTING	 PLATFORM	
FACILITATING	 THE	 DEPLOYMENT,	 ORCHESTRATION	 AND	
MANAGEMENT	OF	SCALABLE,	HETEROGENEOUS	AND	SECURE	
IOT	SERVICES	AND	CROSS-CLOUD	APPS	

Project	Acronym	 RAINBOW	

Grant	 Agreement	
No	 871403	

Instrument	 Research	and	Innovation	action	

Call	/	Topic	 H2020-ICT-2019-2020	/		
Cloud	Computing	

Start	Date	of	Project	 01/01/2020	

Duration	of	Project	 36	months	
	

D5.2	–	RAINBOW	Integrated	Platform	and	
Unified	Dashboard	-	Early	Release	
	
Work	Package	 WP5	–	Continuous	Integration	and	Accessibility	

Lead	Author	(Org)	 Ioannis	Avramidis,	Alex	Bensenousi	(INTRASOFT)	

Contributing	Author(s)	
(Org)	

Konstantinos	Theodosiou,	Giannis	Ledakis	(UBI);	Raphael	
Schermann	 (IFAT);	 Thomas	 Pusztai	 (TUW);	 Demetris	
Trihinas	 (UCY);	 Heini	 Bergsson	 Debes	 (DTU);	 Stefanos	
Venios	 (SUITE	 5);	 Casseti	 Claudio	 Ettore	 (POLITO);	
Theodoros	Toliopoulos	(AUTH)	

Due	Date	 30.06.2021	

Actual	Date	of	Submission	 07.07.2021	

Version	 V1.0	
	
Dissemination	Level	
	
x	 PU:	Public	(*on-line	platform)	
	 PP:	Restricted	to	other	programme	participants	(including	the	Commission)		
	 RE:	Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission)	
	 CO:	Confidential,	only	for	members	of	the	consortium	(including	the	Commission)	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 2 of 57

Copyright © Rainbow Consortium Partners 2020

Versioning	and	contribution	history	

Version	 Date	 Author		 Notes	

0.1	 05.05.2021	 Ioannis	Avramidis,	Alex	Bensenousi	
(INTRASOFT)	

Initial	ToC	

0.4	 22.05.2021	 Ioannis	Avramidis,	Alex	Bensenousi	
(INTRASOFT)	

First	Draft	

0.5	 05.06.2021	
Konstantinos	Theodosiou,	Giannis	Ledakis	
(UBI);	Raphael	Schermann	(IFAT);	Thomas	
Pusztai	(TUW);	Demetris	Trihinas	(UCY);	
Heini	Bergsson	Debes	(DTU);	Stefanos	Venios		
(SUITE	5);	Casseti	Claudio	Ettore	(POLITO);	
Theodoros	Toliopoulos	(AUTH);	

Contributed	to	
components	integration	
status,	early	release	
status,	and	unit	testing.	

0.6	 12.06.2021	 Demetris	Trihinas	(UCY)	 1st	Review	

0.65	 13.06.2021	 Giannis	Ledakis	(UBI)	 2nd	Review	

0.7	 22.06.2021	 Ioannis	Avramidis,	Alex	Bensenousi	
(INTRASOFT)	

Consolidation	of	
comments	and	
contributions	

0.8	 25.06.2021	 Ioannis	Avramidis,	Alex	Bensenousi	
(INTRASOFT)	

Additions	in	
Introduction,	Exec.	
Summary,	Conclusions	

0.9	 30.06.2021	 Ioannis	Avramidis,	Alex	Bensenousi	
(INTRASOFT)	

1st	complete	version	
released	

1.0	 07.07.2021	 Ioannis	Avramidis,	Alex	Bensenousi	
(INTRASOFT)	

Addressing	Reviewers'	
comments	and	Final	
version	

	

	

Disclaimer	

This	document	contains	material	and	 information	that	 is	proprietary	and	confidential	 to	 the	RAINBOW	
Consortium	and	may	not	be	copied,	reproduced,	or	modified	in	whole	or	in	part	for	any	purpose	without	
the	prior	written	consent	of	the	RAINBOW	Consortium		

Despite	the	material	and	information	contained	in	this	document	is	considered	to	be	precise	and	accurate,	
neither	the	Project	Coordinator,	nor	any	partner	of	the	RAINBOW	Consortium	nor	any	individual	acting	on	
behalf	 of	 any	 of	 the	 partners	 of	 the	 RAINBOW	 Consortium	 make	 any	 warranty	 or	 representation	
whatsoever,	express	or	implied,	with	respect	to	the	use	of	the	material,	 information,	method	or	process	
disclosed	in	this	document,	including	merchantability	and	fitness	for	a	particular	purpose	or	that	such	use	
does	not	infringe	or	interfere	with	privately	owned	rights.	

In	 addition,	 neither	 the	 Project	 Coordinator,	 nor	 any	 partner	 of	 the	 RAINBOW	 Consortium	 nor	 any	
individual	acting	on	behalf	of	any	of	the	partners	of	the	RAINBOW	Consortium	shall	be	liable	for	any	direct,	
indirect,	 or	 consequential	 loss,	 damage,	 claim	 or	 expense	 arising	 out	 of	 or	 in	 connection	 with	 any	
information,	material,	advice,	inaccuracy	or	omission	contained	in	this	document.	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 3 of 57

Copyright © Rainbow Consortium Partners 2020

Table	of	Contents	
Executive Summary 7

1 Introduction 8

1.1 Relationship with RAINBOW Deliverables 8

1.2 Structure of the deliverable 8

2 RAINBOW Integrated Platform Overview 9

2.1 RAINBOW Architecture 9

2.2 RAINBOW Components 10
2.2.1 Logically Centralized Orchestrator Backend 10

2.2.1.1 Resource Manager 11
2.2.1.2 Deployment Manager 11
2.2.1.3 Orchestrator Repository 11
2.2.1.4 Integration and Component Dependencies 11
2.2.1.5 Component Packaging and Distribution 11
2.2.1.6 Component Installation & Deployment 11

2.2.2 Orchestration Lifecycle Manager 12
2.2.2.1 Scheduler 12
2.2.2.2 SLO Policy Managers 12
2.2.2.3 Application Lifecycle Managers 13
2.2.2.4 Integration and Component Dependencies 13
2.2.2.5 Component Packaging and Distribution 13
2.2.2.6 Component Installation & Deployment 13

2.2.3 Pre-deployment Constraint Solver 13
2.2.3.1 Integration and Component Dependencies 13
2.2.3.2 Component Packaging and Distribution 13
2.2.3.3 Component Installation & Deployment 14

2.2.4 Service Graph Editor & Analytics Editor 14
2.2.4.1 Integration and Component Dependencies 15
2.2.4.2 Component Packaging and Distribution 16
2.2.4.3 Component Installation & Deployment 16

2.2.5 Mesh Routing Protocol Stack 16
2.2.5.1 Integration and Component Dependencies 16
2.2.5.2 Component Packaging and Distribution 16
2.2.5.3 Component Installation & Deployment 17

2.2.6 Multi-domain sidecar proxy 17
2.2.6.1 Integration and Component Dependencies 17
2.2.6.2 Component Packaging and Distribution 17
2.2.6.3 Component Installation & Deployment 17

2.2.7 Resource & Application-level Monitoring 17
2.2.7.1 Integration and Component Dependencies 18
2.2.7.2 Component Packaging and Distribution 18
2.2.7.3 Component Installation & Deployment 19

2.2.8 Policy Editor 19
2.2.8.1 Integration and Component Dependencies 20
2.2.8.2 Component Packaging and Distribution 20
2.2.8.3 Component Installation & Deployment 20

2.2.9 Data Storage and Sharing 20
2.2.9.1 Integration and Component Dependencies 21

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 4 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.9.2 Component Packaging and Distribution 21
2.2.9.3 Component Installation & Deployment 21

2.2.10 Analytics Service 21
2.2.10.1 Integration and Component Dependencies 22
2.2.10.2 Component Packaging and Distribution 22
2.2.10.3 Component Installation & Deployment 22

2.2.11 Security Enablers 23
2.2.11.1 Integration and Component Dependencies 24
2.2.11.2 Component Packaging and Distribution 24
2.2.11.3 Component Installation & Deployment 25

2.3 Early Release Status 25
2.3.1 Interface’s implementation Status 25
2.3.2 Integrated Orchestration Flow 27
2.3.3 Rainbow Unified Dashboard 29

3 Technical Evaluation and Quality Assurance 35

3.1 Continuous Integration and Quality Assurance 35
3.1.1 Version Control System – Gitlab 35
3.1.2 Container Registry 36
3.1.3 Issue Tracking – Gitlab 36
3.1.4 Software Quality Evaluation 37

3.2 Testing Procedures of the RAINBOW Early Release 38
3.2.1 Unit Testing 38
3.2.2 Integration Testing 38

4 Plans for Upcoming Releases 41

4.1 Second Release 41

4.2 Final Release 41

5 Conclusions 42

6 References 43

Annex I: Unit Tests for Early Release 44
	

List	of	tables	
	
Table	1	Interfaces	Status	...	25
Table	2	Integration	test	for	receiving	deployment	graphs	...	39
Table	3	Integration	Test	for	the	assignment	of	pods	to	nodes	..	39
Table	4	Integration	Test	for	the	proper	send/receive	of	SLO	violation	39
Table	5	Integration	Test	for	the	execution	corrective	elasticity	action	40
Table	6	Integration	Test	for	the	extraction	of	monitoring	data	from	the	nodes	40
Table	7	Integration	Test	for	the	secure	enrolment	of	devices	..	40
	
	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 5 of 57

Copyright © Rainbow Consortium Partners 2020

List	of	figures	
Figure	1	RAINBOW	Reference	Architecture	...	9
Figure	2	Interaction	of	Orchestrator	components	...	10
Figure	3	Interaction	of	Orchestrator	components	...	12
Figure	4	RAINBOW	Graph	Editor	...	14
Figure	5	Setting	constraints	through	the	RAINBOW	Graph	Editor	...	15
Figure	6	Dependencies	of	the	sidecar	proxy	...	17
Figure	7	Resource	and	Application	Monitoring	in	RAINBOW	...	18
Figure	8	Policy	Editor	..	19
Figure	9	Overview	of	Data	Storage	and	Sharing	in	RAINBOW	..	21
Figure	10	Secure	Enrolment	of	devices	...	23
Figure	11	Sequence	diagram	for	RAINBOW	Deployment	...	28
Figure	12	Sequence	diagram	for	RAINBOW	scaling	..	28
Figure	 13	 Sequence	 diagram	 for	 undeployment	 of	 an	 application	 deployed	 with	
RAINBOW	...	29
Figure	14	Main	page	of	the	RAINBOW	Dashboard	...	29
Figure	15	Components	List	in	the	RAINBOW	Dashboard	...	30
Figure	16	Create	or	edit	components	(defining	architecture)	..	30
Figure	17	Create	or	edit	components	(providing	distribution	parameters)	31
Figure	18	The	graph	editor	of	RAINBOW	Dashboard	...	31
Figure	19	A	deployment	in	process	in	the	RAINBOW	Dashboard	...	32
Figure	20	Completed	deployments	list	in	RAINBOW	Dashboard	..	33
Figure	21	Defining	policies	in	the	RAINBOW	Dashboard	..	33
Figure	22	A	scaling	performed	and	shown	in	the	RAINBOW	Dashboard	34
Figure	23	Gitlab	group	and	repositories	for	RAINBOW	project	...	35
Figure	24	Container	Images	available	at	the	project’s	Container	Registry	36
Figure	25	Issues	at	the	project’s	GitLab	group	...	37
Figure	26	SonarQube	Results	of	major	components	...	38
Figure	27	Roadmap	for	RAINBOW	Development	...	41
	
	

List	of	acronyms	

Acronym	 Full	name	

AK	 Attestation	Key	
AOT	 Ahead-Of-Time	
API	 Application	Programming	Interface	

CI/CD	 Continuous	Integration/Continuous	
development	

CPU	 Central	Processing	Unit	
DAA	 Direct	Anonymous	Attestation	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 6 of 57

Copyright © Rainbow Consortium Partners 2020

Acronym	 Full	name	

DAG	 Direct	Acyclic	Graphs	
DHT	 Distributed	Hypertext	
GPS	 Global	Positioning	System		
HTTP	 Hypertext	Transfer	Protocol		
IoT	 Internet	of	Things	
IT	 Integration	Testing	
IPR	 Intellectual	Property	Rights	
ORA	 Oblivious	Remote	Attestation	
PCR	 Platform	Configuration	Register	
RAM	 Random	Access	Memory	
REST	 Representational	state	transfer	
SDK	 Software	Development	Kit	
SGC	 Service-Graph	Chain	
SLO	 Service	Level	Objectives	

SLOC	 Source	Lines	Of	Code	
S-ZTP	 Secure	Zero	Touch	Provisioning	

S-ZTP	CIV	 Zero-Touch	Configuration	Integrity	
Verification	

TPM	 Trusted	Platform	Module	
TSS	 Technology	Support	Services	
UI	 User	Interface	
URL	 Uniform	Resource	Locator	
UT	 Unit	Testing	
VCS	 Version	control	systems	
WPx	 Work	Package	
YAML	 Ain't	Markup	Language	

	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 7 of 57

Copyright © Rainbow Consortium Partners 2020

Executive Summary

This	deliverable	is	a	public	report	summarizing	the	implementation	approach	of	the	1st	
software	 release	 of	 the	 RAINBOW	 integrated	 platform.	 It	 presents	 the	 status	 of	 the	
components	 up	 to	 M18	 and	 provides	 an	 updated	 version	 of	 the	 architecture.	 D5.2	
comprises	 the	 1st	 version	 out	 of	 total	 3	 distinct	 versions	 which	 are	 scheduled	 to	 be	
submitted	with	the	three	different	releases	of	the	RAINBOW	Platform.	The	2nd	version	
will	be	published	in	M27	(D5.3	RAINBOW	Integrated	Platform	and	Unified	Dashboard	–	
Second	Release)	and	the	3rd	and	final	version	will	be	submitted	by	M36	in	D5.4	RAINBOW	
Integrated	 Platform	 and	 Unified	 Dashboard	 –	 Final	 Release.	 Therefore,	 this	 is	 a	 live	
document	that	will	be	constantly	updated	to	depict	the	developments	and	releases	of	the	
RAINBOW	platform	up	until	the	end	of	the	project.	

The	status	of	the	integrated	platform	is	also	provided.	For	this	1st	confidential	prototype,	
partial	integration	has	been	achieved	to	offer	basic	functionalities	of	the	platform.	The	
goal	was	 to	 support	 functionalities	 as	 the	proper	definition	of	 application	graphs	 and	
their	 deployment	 over	 cloud	 and	 edge	 resources,	 thus	 allowing	 the	 planning	 and	 the	
execution	 of	 the	 first	 prototypes	 of	 the	 RAINBOW	 demonstrators.	 In	 addition,	 this	
prototype	supports	scaling	of	the	service	graphs	based	on	(Service	Level	Objectives)	SLOs	
that	consider	different	metrics,	collected,	and	analysed	by	the	Monitoring	and	Analytics	
Services	 of	 RAINBOW.	 Furthermore,	 the	 attestation	 security	 enabler	 is	 supported,	
through	which	we	can	attest	either	the	devices	that	want	to	join	the	cluster	or	the	pre-
existing	ones.	

This	deliverable	also	provides	an	overview	of	the	interaction	of	a	user	in	the	first	release	
of	the	RAINBOW	Dashboard,	and	the	initial	results	of	software	quality	evaluation.	Finally,	
we	provide	the	plans	for	the	upcoming	releases	of	the	RAINBOW	platform.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 8 of 57

Copyright © Rainbow Consortium Partners 2020

1 Introduction

Software	 integration	 is	 a	 process	 that	 involves	 following	 several	 multi-disciplinary	
approaches	during	the	design	and	implementation	phase.	In	this	document,	we	provide	
documentation	of	the	early	release	of	the	RAINBOW	platform	and	explain	the	process	of	
design	 and	 implementation,	 covering	 the	 phases	 of	 components’	 development,	
integration,	and	testing/evaluation.		
	

1.1 Relationship with RAINBOW Deliverables

This	deliverable	is	built	on	the	foundation	of	the	architecture	initially	defined	in	D1.2,	the	
integration	points	defined	in	D5.1,	the	technical	developments	that	have	been	performed	
in	 the	 scope	 of	WP2,	WP3	 and	WP4,	 and	 the	 processes	 for	 development,	 testing	 and	
integration	as	also	defined	in	D5.1.	The	information	presented	in	this	deliverable	is	used	
as	an	addition	to	the	1st	software	release	of	the	RAINBOW	platform.	

1.2 Structure of the deliverable

The	rest	of	the	deliverable	is	structured	as	follows.	
• Section	2	is	the	core	part	of	the	document,	which	presents	an	updated	version	of	

the	architecture,	details	the	components,	and	provides	an	overview	of	platform	
status	for	this	first	release.	

• Section	3	presents	the	first	results	of	the	testing	and	quality	assurance	processes.	
• Section	4	presents	the	plans	for	the	upcoming	releases	of	the	RAINBOW	platform.	
• Finally,	Section	5	concludes	the	document.	

	
	
	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 9 of 57

Copyright © Rainbow Consortium Partners 2020

2 RAINBOW Integrated Platform Overview

In	this	section,	we	provide	the	documentation	regarding	the	first	release	of	the	platform,	
covering	 the	 updates	 we	 had	 to	 introduce	 to	 the	 architecture,	 the	 status	 of	 the	
components,	and	the	status	of	the	integrated	platform	in	this	first	release.	

2.1 RAINBOW Architecture

The	architecture	or	RAINBOW	has	been	initially	presented	in	D1.2	[1]	and	was	updated	
in	the	scope	of	D5.1	[2].	In	this	document,	we	provide	the	architecture	as	a	starting	point	
for	the	presentation	of	the	RAINBOW	integrated	platform,	and	in	addition,	we	provide	
some	 updates	 that	 better	 reflect	 the	 actual	 integrated	 platform.	 The	 changes	 in	 the	
architecture	as	presented	in	the	Figure	1	below.	

	
Figure	1	RAINBOW	Reference	Architecture	

The	changes	were	mainly	in	the	Orchestration	and	Monitoring	layer;	two	main	packages	
of	loosely	coupled	components	are	provided	with	the	Logically	Centralized	Orchestration	
Backend	and	the	Orchestration	Lifecycle	Manager.	A	new	subcomponent	called	Scheduler	
being	also	introduced.		Also,	the	Analytics	Service,	together	with	the	newly	added	Data	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 10 of 57

Copyright © Rainbow Consortium Partners 2020

Storage	and	Sharing	component,	build	a	new	layer,	the	Data	Management	and	Analytics	
layer.	Finally,	the	Monitoring	Agent	is	also	included	as	part	of	the	Mesh	Stack.	

In	the	next	section,	the	components	of	these	main	entities,	and	where	applicable,	their	
subcomponents,	are	listed,	explaining	the	provided	functionalities	in	this	first	release	and	
their	 integration	as	part	of	 the	platform.	Furthermore,	additional	details	are	provided	
regarding	the	packaging	and	the	setup	of	the	components.	

2.2 RAINBOW Components

2.2.1 Logically Centralized Orchestrator Backend

The	 RAINBOW	 Logically	 Centralized	 Orchestrator	 Backend	 enables	 the	 UI	 Editors	 to	
persist	 the	necessary	data	 to	 the	database	and	authenticate	and	authorize	 the	user	 to	
access	them.	It	is	part	of	the	Orchestration	and	Monitoring	Layer.	Also,	as	this	component	
host	the	repository,	it	helps	the	other	RAINBOW	components	send	and	depict	anything	
essential	to	the	appropriate	UI	tool.			

The	Logically	Centralized	Orchestrator	Backend	is	part	of	the	first	RAINBOW	Platform	
release	and	it	consists	of	three	loosely	coupled	components:	the	resource	manager,	the	
deployment	manager,	and	the	orchestrator	repository,	as	depicted	in	the	figure	below.	

	

	
Figure	2	Interaction	of	Orchestrator	components		

2	

3	

1	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 11 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.1.1 Resource Manager

Based	on	the	state-of-the-art	analysis	and	requirements	definition	performed	in	WP1,	we	
chose	Kubernetes	as	Resource	Manager	of	 the	RAINBOW	platform.	 In	specific,	 for	 this	
release	of	RAINBOW,	we	use	native	Kubernetes	V1.21	[3].	For	the	second	and	the	final	
release,	the	handling	of	fog-specific	resources	(e.g.,	GPS	or	cameras)	will	be	improved.	

2.2.1.2 Deployment Manager

The	Deployment	Manager	is	implemented	as	a	Kubernetes	controller	for	handling	Service	
Graphs.	 It	 is	 implemented	 in	 Go	 [4]	 using	 kubebuilder	 [5].	 In	 the	 first	 release,	 this	
controller	 can	 create	 and	update	Kubernetes-native	deployments	 based	on	 submitted	
Service	Graphs	and	configure	Service	Level	Objectives	(SLOs)	and	basic	monitoring.		

This	component	relies	on	Service	Graph	Editor	and	the	Kubernetes	distribution	used	as	
Resource	 Manager.	 The	 integration	 of	 the	 Deployment	 Manager	 to	 the	 RAINBOW	
Orchestrator	 is	 complete	 for	 this	 first	 release,	 thus	 allowing	 the	 proper	 execution	 of	
deployment	flows,	as	presented	in	section	2.3.2.		

For	the	second	and	the	final	release,	the	monitoring	configuration	(that	is	added	as	part	
of	the	service	graph)	will	be	expanded,	and	information	about	the	current	deployment	
status	will	be	added	to	the	Service	Graph.	

2.2.1.3 Orchestrator Repository

This	repository	is	a	MySQL	database	that	keeps	all	the	information	generated	during	the	
deployment	and	orchestration	process.	

2.2.1.4 Integration and Component Dependencies

This	 Orchestrator	 Backend	 and	 all	 its	 subcomponents	 depend	 on	 the	 Kubernetes	
distribution	 that	 is	 used.	 Kubernetes	 (v1.21	 for	 this	 first	 release)	must	 be	 configured	
appropriately	 so	 that	 Rainbow	 Orchestrator	 components	 can	 create	 and	 delete	 the	
deployments	of	the	Service	Graphs,	as	it	also	depends	on	a	database	that	the	templates	of	
the	Service	Graphs	and	other	related	information	are	stored.	
	
The	 implementation	 and	 integration	 of	 this	 component	 will	 continue	 until	 the	 next	
RAINBOW	release.		

2.2.1.5 Component Packaging and Distribution

The	Logically	Centralized	Orchestrator	Backend	is	packaged	as	a	single	Docker	container	
and	made	available	through	the	RAINBOW	container	registry	[6]	that	features	a	private	
Docker	Image	Hub.	

2.2.1.6 Component Installation & Deployment

	A	 container	 image	 is	provided	 for	 this	 component,	which	will	 be	 installed	by	using	 a	
provided	 deployment	 YAML	 that	 is	 compatible	 with	 the	 kubectl[7]	 tool	 used	 for	
Kubernetes	deployments.		
The	deployment	must	be	done	to	a	control	plane/master	node,	which	must	be	of	x86	CPU	
architecture.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 12 of 57

Copyright © Rainbow Consortium Partners 2020

	

2.2.2 Orchestration Lifecycle Manager

The	Orchestration	Lifecycle	Manager	is	part	of	the	Orchestration	and	Monitoring	layer,	
and	 consists	 of	 three	 loosely	 coupled	 components,	 namely	 the	 Scheduler,	 the	 Policy	
Managers	and	the	Lifecycle	Managers:	
	

	
Figure	3	Interaction	of	Orchestrator	components		

2.2.2.1 Scheduler

The	Scheduler	determines	on	which	node	a	service	should	be	placed.	It	is	written	in	Go	
and	 is	 based	 on	 the	 Kubernetes	 Scheduling	 Framework	 [8].	 Its	 integration	 with	 the	
RAINBOW	 Orchestrator	 is	 complete.	 A	 subset	 of	 the	 planned	 scheduling	 plugins	 is	
complete,	the	rest	will	be	implemented	for	the	final	release.	
	

2.2.2.2 SLO Policy Managers

The	 Policy	 Managers	 monitor	 SLO	 compliance	 and	 trigger	 elasticity	 strategies	 upon	
violations.	They	are	written	 in	TypeScript	using	 the	Polaris/SLOC	 framework	[9].	The	
managers	for	the	average	CPU	usage	SLO	and	the	hazard	detected	SLO	(for	use	case	2)	
have	been	implemented	and	integrated.	The	rest	will	follow	for	the	second	and	the	final	
release.	

3
1	1	

2	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 13 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.2.3 Application Lifecycle Managers

The	 Lifecycle	 Managers	 manage	 the	 service	 instances	 and	 execute	 the	 elasticity	
strategies.	Service	instances	management	is	provided	by	Kubernetes	natively.	Elasticity	
strategies	 are	 custom	 Kubernetes	 controllers	 written	 in	 Go	 using	 kubebuilder.	 The	
elasticity	strategies	for	horizontal	scaling	and	service	migration	between	cluster	nodes	
are	implemented	and	integrated.	
	

2.2.2.4 Integration and Component Dependencies

This	Lifecycle	Manager	and	all	its	subcomponents	depend	on	the	Kubernetes	distribution	
that	is	used.	Kubernetes	(v1.21	for	this	first	release)	must	be	configured	appropriately	so	
that	Rainbow	Orchestrator	and	the	Lifecycle	Manager	works	properly.	It	also	depends	on	
a	database	that	the	templates	of	 the	Service	Graphs	and	other	related	 information	are	
stored.		

2.2.2.5 Component Packaging and Distribution

For	the	packaging	of	this	component,	container	images	have	been	created	and	hosted	in	
the	projects	docker	registry.	
	

2.2.2.6 Component Installation & Deployment

A	 container	 image	 is	 provided	 for	 this	 component,	which	will	 be	 installed	 by	 using	 a	
provided	deployment	YAML	that	is	compatible	with	the	kubectl	tool	used	for	Kubernetes	
deployments.		
The	deployment	must	be	done	to	a	control	plane/master	node,	which	must	be	of	x86	CPU	
architecture.	
	

2.2.3 Pre-deployment Constraint Solver

The	Pre-deployment	Constraint	Solver	a	component	of	the	Orchestration	and	Monitoring	
Layer	that	is	under	implementation	and	is	available	as	a	Kubernetes	Admission	Webhook	
[10]	for	Service	Graphs.	It	will	use	Optaplanner	[11]	constraint	solver	to	solve	the	issue	
of	resource	optimization.	It	is	planned	for	the	second	platform	release.	

2.2.3.1 Integration and Component Dependencies

At	this	first	release,	the	pre-deployment	constraint	solver	has	not	been	integrated	with	
other	components.	However,	it	depends	on	the	Service	Graph	Editor	and	the	Kubernetes	
distribution	used	by	RAINBOW	(installed	during	RAINBOW	setup).	

2.2.3.2 Component Packaging and Distribution

For	the	packaging	of	this	component,	container	images	will	be	created	and	hosted	in	the	
projects	docker	registry.	
	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 14 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.3.3 Component Installation & Deployment

For	the	deployment	of	this	component,	dedicated	YAML	files	and	the	kubectl[7]	tool	will	
be	used.		

2.2.4 Service Graph Editor & Analytics Editor

The	RAINBOW	Service	Graph	Editor	&	Analytics	Editor	is	a	component	of	the	modelling	
layer,	 responsible	 to	 author	 and	 maintain	 application	 templates	 of	 cloud-native	
components,	as	also	to	save	and	send	the	instantiation	of	them.	This	can	be	done	through	
an	abstract	way	by	formulating	abstracted	direct	acyclic	graphs	(DAG)	representations	
of	 the	cloud-native	applications,	which	are	 compatible	with	 the	 industrial	 format	 (i.e.,	
docker-compose,	Kubernetes	YAML,	helm-charts).			

	
Figure	4	RAINBOW	Graph	Editor	

	
Adding	to	that,	the	Service	Graph	Editor	can	help	add	deployment	constraints,	resource	
constraints,	 operation	 constraints	 and	 security	 constraints	 to	 the	 instantiation	 of	 the	
Service	Graphs.			
	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 15 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	5	Setting	constraints	through	the	RAINBOW	Graph	Editor	

The	Service	Graph	Editor	 is	part	of	 the	 first	RAINBOW	Platform	release.	There	are	no	
deviations	in	the	implementations,	and	everything	that	is	implemented	is	fully	integrated	
with	the	needed	RAINBOW	components.	The	component	will	be	further	updated	with	the	
rest	of	the	functionalities	until	the	second	and	the	final	release.	
	
The	analytics	part	of	the	editor	will	be	used	for	the	creation	or	edit	of	analytic	queries	and	
the	 declaration	 of	 various	 optimization	 strategies	 and	 constraints	 regarding	 query	
execution	and	data	movement	and	is	currently	under	implementation.	

2.2.4.1 Integration and Component Dependencies

The	 Service	 Graph	 Editor	 &	 Analytics	 Editor	 depends	 on	 the	 Logically	 Centralized	
Orchestrator	Backend	to	save	the	Service	Graphs	as	also	to	deploy	them.	Also,	it	depends	
on	the	Analytics	Service	to	create	and	send	analytic	queries.	
	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 16 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.4.2 Component Packaging and Distribution

The	Service	Graph	Editor	&	Analytics	Editor	is	packaged	as	a	Docker	container	along	with	
the	Policy	Editor	are	available	through	the	RAINBOW	Artifactory	that	features	a	private	
Docker	Image	Hub.	

2.2.4.3 Component Installation & Deployment

For	 the	 installation	 process,	 a	 container	 image	 is	 provided	 that	 can	 be	 used	 for	
deployment	of	the	component;	however,	a	deployment	YAML	file	that	can	be	used	with	
the	kubectl	command	to	deploy	it	at	Kubernetes	will	also	be	provided	in	the	components’	
repository.	 As	 far	 as	 the	 configuration,	 at	 the	 deployment	 YAML	 file,	 the	 URL	 of	 the	
Logically	 Centralized	Orchestrator	 Backend	 need	 to	 be	 specified	 as	 an	 environmental	
variable.	

The	deployment	must	be	done	to	a	control	plane/master	node,	which	must	be	x86	CPU	
architecture.	
	

2.2.5 Mesh Routing Protocol Stack

At	the	routing	layer,	the	Mesh	routing	protocol	stack	provides	a	node	with	secure-layer-
3	connectivity	to	an	existing	mesh	topology	without	having	to	statically	configure	its	IP	
address	or	the	IP	address	of	one	of	its	adjacent	nodes.	Moreover,	it	automates	the	process	
of	binding	to	a	‘logically	centralized’	Kubernetes	cluster.	To	avoid	reinventing	the	wheel,	
RAINBOW	forked	an	open	source	DHT-based	routing	protocol	called	CJDNS	in	order	to	
satisfy	 the	 raised	 functional	 requirements.	 Hence	 specific	 extensions	 have	 been	
implemented	to	make	the	admission	control	more	secure	and	the	process	of	cluster-head	
selection	completely	autonomic.	

2.2.5.1 Integration and Component Dependencies

The	Mesh	Routing	protocol	stack	has	two	major	three	major	dependencies.	These	are:	
• It	can	operate	on	physical	devices	 that	support	802.11s	wireless	 link	protocols	

which	is	essential	for	layer	2	connectivity	of	the	mesh	nodes.	
• It	requires	the	existence	of	the	Security	Enablers	(see	2.2.11)	since	the	admission	

control	 is	 performed	upon	 a	 formal	 attestation	process	 that	 requires	 access	 to	
TPM	functional	crypto-primitives.	

• 	It	can	operate	x86/ARM	processors.	

2.2.5.2 Component Packaging and Distribution

The	 entire	 stack	 is	 developed	 using	 Quarkus	 Framework	which	 is	 an	 Ahead-Of-Time	
(AOT)	compilation	framework	for	Java	using	also	linked	C++	binaries	along	the	rest	of	the	
edge	components.	The	entire	stack	is	packaged	as	a	container	and	hosted	to	the	project's	
CI	registry.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 17 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.5.3 Component Installation & Deployment

The	 installation	 of	 the	 Mesh	 Routing	 protocol	 stack	 is	 performed	 manually	 by	 the	
owner/administrator	of	the	edge	device.	
	

2.2.6 Multi-domain sidecar proxy

The	sidecar	proxy	is	an	umbrella	component	of	the	routing	 layer,	 that	wraps	all	edge-
related	 components	 that	 need	 to	 operate	 on	 the	 edge	 node.	 These	 include	 the	Mesh	
Routing	 component	 (2.2.5),	 the	 raw	 device	 management	 component,	 the	 attestation	
handlers,	the	kublet	management	and	the	L7	control	plane	component.	

2.2.6.1 Integration and Component Dependencies

As	already	mentioned,	this	umbrella	component	encapsulates	five	 internal	modules	as	
depicted	on	the	figure	below.	The	component	acts	as	a	single	point	of	reference	for	any	
API	call	that	is	routed	to	these	internal	modules.	
	

	
Figure	6	Dependencies	of	the	sidecar	proxy	

2.2.6.2 Component Packaging and Distribution

The	 mesh	 Overlay	 Mesh	 Management	 and	 the	 Attestation/Security	 Enablers	 are	
autonomously	packaged	 in	their	own	containers	as	explained	on	2.2.5	and	2.2.11.	The	
other	three	components	are	shipped	as	a	single	container	since	they	belong	to	the	same	
codebase.	They	are	developed	in	Java	using	the	Quarkus	Framework.	They	are	packaged	
as	ARM	containers	and	x86	containers	with	the	project’s	CI	registry.	

2.2.6.3 Component Installation & Deployment

The	installation	of	the	side-car	proxy	is	performed	manually	by	the	owner/administrator	
of	the	edge	device.	The	edge	device	must	support	Open	Container	Interface	and	must	be	
equipped	with	either	x86	or	ARM	processor.	
	

2.2.7 Resource & Application-level Monitoring

RAINBOW	 introduces	 a	 comprehensive	 and	 extensible	 stack	 for	 automating	 the	
monitoring	 process	 of	 IoT	 services	 deployed	 through	 containerized	 execution	
environments	 in	 geo-distributed	 fog	 settings.	 The	 architecture	 of	 the	 RAINBOW	
Monitoring	follows	an	agent-based	architecture	that	embraces	the	producer-consumer	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 18 of 57

Copyright © Rainbow Consortium Partners 2020

paradigm.	This	approach	provides	interoperable,	scalable	and	real-time	monitoring	for	
extracting	 both	 infrastructure	 and	 application	 behaviour	 data	 from	 deployed	 IoT	
services.	The	RAINBOW	Monitoring	runs	in	a	non-	intrusive	and	transparent	manner	to	
underlying	 fog	 environments	 as	 neither	 the	metric	 collection	 process	 nor	 the	metric	
distribution	 and	 storage	 are	 dependent	 to	 underlying	 platform	 APIs	 (e.g.,	 fog-node	
specific)	and	communication	mechanisms.	The	following	figure	introduces	a	high-level	
overview	of	the	RAINBOW	Monitoring.	

	
Figure	7	Resource	and	Application	Monitoring	in	RAINBOW	

On	each	RAINBOW-enabled	fog	node,	a	Monitoring	Agent	is	deployed	to	collect	system-
level	 data	 regarding	 the	 resource	 utilization	 of	 both	 the	 fog	 node	 and	 the	 deployed	
containerized	 services	 through	 Monitoring	 Probes	 created	 by	 RAINBOW	 Developers.	
Several	 Monitoring	 Probes	 are	 already	 made	 available	 by	 RAINBOW	 and	 include	 a	
Netdata	metric	collector	and	a	Docker	Container	Probe.	In	turn,	users	can	take	advantage	
of	the	RAINBOW	Monitoring	SDK	to	develop	their	own	custom	Monitoring	Probes,	so	that	
app-level	performance	metrics	are	also	“pushed”	to	the	Monitoring	Agent.	This	enables	
users	to	have	one	unified	environment	to	view	performance	data	and	interact	with,	rather	
than	having	to	deal	with	multiple	monitoring	tools.	All	monitoring	data	is	exported	by	the	
Monitoring	Agent	to	the	local	Storage	Agent	so	that	users	can	query	for	both	real-time	
data	and	historical	data	persistently	stored	across	the	Storage	Fabric	created	on	top	of	
the	overlay	mesh	network	inter-connecting	the	user’s	fog	nodes.	
	
Monitoring	is	part	of	the	RAINBOW	Platform	first	release,	and	there	are	no	deviations	
from	the	DoW	timeline.			

2.2.7.1 Integration and Component Dependencies

Monitoring	does	not	feature	any	dependencies	with	other	RAINBOW	components.	On	the	
other	hand,	the	Storage	Agent,	which	is	in	charge	of	exposing	the	Monitoring	API,	depends	
on	the	resource	and	application	monitoring	to	provide	for	each	fog	node	monitoring	data.	

2.2.7.2 Component Packaging and Distribution

Monitoring	 is	 packaged	 as	 a	 single	Docker	 container	 and	made	 available	 through	 the	
RAINBOW	container	registry.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 19 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.7.3 Component Installation & Deployment

No	installation	effort	is	required	by	the	users,	as	the	Monitoring	is	part	of	the	mandatory	
services	of	the	RAINBOW	Mesh	Stack	and	thus,	upon	opting	to	deploy	an	application	on	
fog	offerings	the	Monitoring	will	be	automatically	installed.	Nonetheless,	users	are	free	
(and	 are	 highly	 suggested!)	 to	 deviate	 from	 the	 default	 parameterization	 of	 the	
monitoring	process	to	set	the	periodicity	of	metrics	to	be	collected,	enable	logging	and	
the	 level	 of	 reporting,	 and	 give	 a	 name	 and	 tags	 to	 the	 Monitoring	 Agent	 to	 ease	
readability	 and	 association	 when	 performing	 monitoring	 queries	 via	 the	 RAINBOW	
Dashboard.	The	configuration	can	be	done	either	through	the	YAML	configuration	file	of	
each	Agent	or	through	the	RAINBOW	Dashboard.	

Monitoring	is	part	of	the	RAINBOW	Mesh	Stack	and	thus,	the	Monitoring	Agent	is	both	
deployed	and	 run	on	 the	 fog	node	offerings	 that	 are	 reserved	by	 the	user	 for	his/her	
application	deployment.		
	

2.2.8 Policy Editor

The	RAINBOW	Policy	Editor	is	part	of	the	Modelling	Layer	and	used	by	the	Service	Graph	
provider	to	apply	instructions/guidelines	regarding	how	the	overall	application	should	
behave	prior	 to	deployment	 and	during	 runtime.	These	 instructions	 are	 addressed	as	
Policies	and	based	on	their	properties	affect	either	the	initial	deployment	of	the	Service	
Graph	or	the	overall	runtime	behavior.	Depending	on	the	state	of	the	Service	Graph	that	
affect,	 the	 policies	 can	 be	 addressed	 as	 Design-Time	 policies	 or	 Runtime	 policies	
accordingly.		

	
Figure	8	Policy	Editor	

The	Policy	Editor	is	part	of	the	first	RAINBOW	Platform	release,	there	are	no	deviations	
in	the	implementation,	and	no	deviations	are	foreseen.	As	for	now,	the	Policy	Editor	UI	is	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 20 of 57

Copyright © Rainbow Consortium Partners 2020

implemented	for	the	most	part,	with	some	features	remaining	to	be	added	in	the	second	
release.	As	 far	as	the	 integration	 is	concerned,	some	indicative	 integrations	have	been	
already	 done,	 but	 further	 will	 be	 needed	 for	 the	 rest	 of	 the	 features	 that	 will	 be	
implemented	in	the	second	release.	

2.2.8.1 Integration and Component Dependencies

This	 component	 depends	 on	 the	 Data	 Storage	 and	 Sharing	 component	 to	 fetch	 the	
deployment's	 exposed	metrics	 and	 the	 Logically	 Centralized	Orchestrator	 Backend	 to	
fetch	 the	 deployments	 and	 save	 the	 policies,	 which	 are	 then	 sent	 to	 the	 appropriate	
RAINBOW	component.	

2.2.8.2 Component Packaging and Distribution

The	Policy	 Editor	 is	 packaged	 as	 a	Docker	 container	 together	with	 the	 Service	Graph	
Editor	 &	 Analytics	 Editor	 and	made	 available	 through	 the	 RAINBOW	Artifactory	 that	
features	a	private	Docker	Image	Hub.	

2.2.8.3 Component Installation & Deployment

For	 the	 installation	process,	a	container	 image	will	be	provided,	as	also	a	deployment	
YAML	file	that	can	be	used	with	the	kubectl	command	to	deploy	it	at	Kubernetes.	As	far	
as	the	configuration,	at	the	deployment	YAML	file,	the	URL	of	the	Logically	Centralized	
Orchestrator	Backend	need	to	be	specified	as	an	environmental	variable.	
The	deployment	must	be	done	to	a	control	plane/master	node,	which	must	be	of	x86	CPU	
architecture.	
	

2.2.9 Data Storage and Sharing

The	Data	 Storage	 and	 Sharing	 component	 is	 a	 component	 of	 the	Data	Management	&	
Analytics	layer,	implemented	in	Java	on	top	of	the	Apache	Ignite	main-memory	database.	
The	data	ingestion	and	extraction	services	are	implemented	behind	a	REST	API	and	are	
available	for	usage	to	write	and	read	data	from	the	database’s	caches.	The	functionalities	
that	are	provided	along	with	the	ingestion/extraction	services	are:	

1. Tuning	the	persistence	of	data.	Either	only	in-memory	caches	or	a	combination	of	
in-memory	and	persistent	caches	can	be	used.	

2. Tuning	the	eviction	rate	of	persistent	data.	If	persistence	is	used,	the	eviction	rate	
is	used	to	delete	data	that	were	created	before	the	specified	period.	

3. Tuning	 the	 optional	 user-application	 cache.	 The	 RAINBOW	 users	 can	 use	 this	
option	to	store	in-memory	key-value	pairs	through	the	ingestion	service.	

The	component	will	be	further	upgraded	with	more	filters	and	functions	on	the	extraction	
service.	Along	with	the	API	upgrades,	data	placement	and	movement	algorithms	will	be	
implemented	 for	 the	 second	 and	 final	 release	 of	 the	 project.	 These	 algorithms	 are	
intended	to	make	decisions	based	on	node	information	about	the	data	placement	and	if	
needed,	move	data	 from	a	 fog	node	to	another	 to	decongest	unstable	nodes.	The	Data	
Storage	 and	 Sharing	 component	 has	 been	 integrated	 and	 tested	 with	 RAINBOW’s	
Analytics	Service	and	Resource	&	Application-level	Monitoring	component.		

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 21 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	9	Overview	of	Data	Storage	and	Sharing	in	RAINBOW	

2.2.9.1 Integration and Component Dependencies

The	component	 is	used	by	the	Resource	&	Application-level	Monitoring	component	 to	
store	the	monitored	metrics	for	both	the	latest	and	the	historical	values.	The	stored	data	
are	further	used	by	the	Analytics	Service	and	the	Orchestrator	to	answer	queries	and	take	
decisions	on	the	service	placement.	

2.2.9.2 Component Packaging and Distribution

The	 component	 is	 implemented	 in	 Java	 using	 the	Maven	management	 tool.	 Using	 the	
“mvn	clean	compile	test	assembly:	single”	command,	the	code	is	compiled,	tested	against	
the	implemented	unit	tests,	and	packaged	in	a	single	jar	file	that	contains	all	the	necessary	
dependencies,	 e.g.,	 Ignite.	 Furthermore,	 a	 Docker	 image	 is	 created	with	 the	 resulting	
package	that	initiates	an	Ignite	instance	whenever	a	container	is	started.	

2.2.9.3 Component Installation & Deployment

The	 component	 instances	 can	 be	 configured	 to	 change	 the	 status	 of	 the	 optional	
functionalities,	e.g.,	user-application	cache,	and	change	the	type	of	Ignite	instance.	Each	
instance	can	either	be	a	Server,	where	data	are	stored,	or	a	Client	for	mass	data	extraction.	

The	component	is	deployed	using	the	Docker	image	in	every	fog	node	of	the	RAINBOW’s	
environment.	Starting	with	a	single	Server	instance	that	initializes	the	Ignite	cluster,	the	
rest	of	 the	Server	 instances	can	enter	the	cluster	by	being	deployed	to	every	fog	node	
available	that	runs	RAINBOW’s	Side-Car	proxy.	Finally,	one	or	more	Client	instances	can	
be	deployed	on	the	cloud	nodes	for	usage.	
	

2.2.10 Analytics Service

The	RAINBOW	Analytics	Service	 is	 a	 component	of	 the	Data	Management	&	Analytics	
layer,	responsible	for	the	RAINBOW	ecosystem’s	needs	for	data	processing	so	that	real-
time	 analytic	 insights	 can	 be	 extracted	 from	 the	 vast	 amounts	 of	 monitoring	 data	
collected	 from	 both	 the	 underlying	 fog	 resources	 and	 performance	 indicators	 from	
deployed	 IoT	 applications.	 To	 this	 end,	 the	 service	 provides	 a	 completely	 distributed	
solution	with	the	data	processing	performed	-in	place-	right	where	the	data	is	generated	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 22 of 57

Copyright © Rainbow Consortium Partners 2020

so	that	analytic	insights	are	extracted	with	low-latency	and	with	the	collected	data	never	
leaving	 the	 overlay	 mesh	 network	 interconnecting	 the	 collaborating	 fog	 nodes.	 The	
Distributed	Data	Processing	service	builds	upon	Apache	Storm	with	our	aim	being	to	not	
implement	 yet	 another	 distributed	 data	 processing	 engine	 but	 rather	 to	 design	 novel	
scheduling	algorithms	that	are	decoupled	from	the	underlying	engine	and	acknowledge	
the	 unique	 settings	 found	 in	 the	 majority	 of	 geo-distributed	 environments	 that	 IoT	
applications	are	deployed	in.	
Three	are	the	key	internal	components	of	the	RAINBOW	Analytics	Service.	The	first	is	the	
Analytics	 Enabler,	 which	 is	 the	 Orchestration	 Service	 that	 accepts	 requests	 from	 the	
orchestrator	and	manages	the	distributed	processing	environment	across	the	fog	realm.	
The	 second	 component	 is	 StreamSight	 [13],	 which	 is	 the	 framework	 accepting	 user-
designed	 analytic	 queries	 in	 a	 high-level	 and	 declarative	 format.	 StreamSight	 is	
responsible	for	translating	these	high-level	queries	into	continuous	queries	that	will	be	
deployed	for	execution	across	the	Analytics	Workers	reserved	on	the	fog	offerings.	The	
third	component,	which	are	many	 instances	of	 the	same	component,	are	 the	Analytics	
Workers	which	execute	the	analytic	tasks	of	the	submitted	jobs	and	these	workers	are	
deployed	on	the	fog	nodes	reserved	by	the	user	for	his/her	application.	

The	Analytics	Service	 is	part	of	 the	RAINBOW	Platform	 first	 release,	and	 there	are	no	
deviations	from	the	DoW	timeline.	

2.2.10.1 Integration and Component Dependencies

The	Analytics	Workers	 upon	 instantiation	 expect	 to	 find	 two	 key	RAINBOW	 services.	
First,	the	Analytics	Enabler,	which	is	the	service	managing	the	Workers;	and	second,	the	
RAINBOW	Storage	Fabric,	so	that	the	monitoring	data	that	analytics	will	be	derived,	can	
be	extracted.	

2.2.10.2 Component Packaging and Distribution

All	components	of	the	Analytics	Service	are	packaged	as	Docker	containers.	In	turn,	the	
Analytics	Enabler	and	StreamSight	are	made	available	through	the	RAINBOW	Artifactory	
that	features	a	private	Docker	Image	Hub.	On	the	other	hand,	the	Analytics	Worker	is	the	
vanilla	 Apache	 Storm	 Supervisor,	 and	 the	 Docker	 Image	 for	 this	 container	 is	 made	
available	through	the	public	Docker	Hub.	

2.2.10.3 Component Installation & Deployment

No	installation	effort	is	required	by	the	users.	Specifically,	both	the	Analytics	Enabler	and	
StreamSight	 are	 part	 of	 the	 RAINBOW	 Orchestration	 Services	 and	 thus,	 will	 be	
automatically	 installed	upon	the	deployment	of	RAINBOW	on	the	application’s	Cluster	
Head.	Nonetheless,	users	are	free	to	configure	the	analytics	scheduling	process	by	opting	
declare,	upon	analytics	job	submission,	what	optimization	method	should	be	used	during	
runtime	 (e.g.,	 optimize	 job	 for	 latency,	 performance,	 data	 quality,	 etc).	 In	 turn,	 no	
installation	effort	is	required	for	the	deployment	of	the	Analytics	Workers	are	they	are	
part	of	 the	RAINBOW	Mesh	Stack.	However,	as	analytics	are	an	optional	 feature	made	
available	to	users,	the	user	will	have	to	select	during	the	configuration	of	the	Mesh	Stack	
that	an	Analytics	Worker	should	be	installed	on	each	fog	node.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 23 of 57

Copyright © Rainbow Consortium Partners 2020

The	Analytics	Workers	are	part	of	the	RAINBOW	Mesh	Stack	and	thus,	are	deployed	on	
the	fog	node	offerings	that	are	reserved	by	the	user	for	his/her	application	deployment.	
On	the	other	hand,	the	Analytics	Enabler,	in	charge	of	managing	the	analytics	process	and	
handling	requests	by	the	Orchestrator,	is	part	of	the	RAINBOW	Orchestration	layer	and	
“sits”	 on	 the	 Cluster	 head	 node	 where	 the	 Orchestrator	 is	 located	 as	 well.	 In	 turn,	
StreamSight,	the	framework	accepting	user-designed	analytic	queries	in	a	high-level	and	
declarative	format,	is	also	located	on	the	cluster	node	as	well.	
	

2.2.11 Security Enablers

The	 RAINBOW	 secure	 enrolment	 service,	 comprised	 of	 the	 Zero-Touch	 Configuration	
Integrity	 Verification	 (S-ZTP	 CIV)	 and	 Remote	 Attestation	 Variants	 (including	 the	
Enhanced	 Direct	 Anonymous	 Attestation	 (DAA)	 to	 be	 integrated	 with	 the	 RAINBOW	
CJDNS	networking	mechanism),	focuses	on	the	provision	of	operational	assurance	and	
secure	 device	 on-boarding	 prior	 to	 the	 enrolment	 of	 a	 fog/edge	 node	 to	 the	 overall	
network.	 	 This,	 in	 turn,	 enables	 the	 creation	 of	 trust-aware	 service	 graph	 chains.	 As	
described	 in	 D2.2	 [14]	 and	 D2.3	 [15],	 the	 architecture	 followed	 by	 the	 RAINBOW	
attestation	 agents	 follows	 a	 decentralized	 architecture	 in	 which	 the	 RAINBOW	
orchestrator	can	act	as	the	verifier	 for	attesting	the	secure	state	of	a	device	requesting	
access	 to	 the	 overall	 system.	 The	 architecture	 is	 depicted	 in	 the	 diagram	 below:	 The	
service	comprises	 two	 interdependent	components:	 the	prover	 component,	which	 is	a	
Docker	 container	 instance	 running	 on	 fog/edge	 nodes	 which	 exposes	 a	 set	 of	
functionalities	 through	 a	 REST	 API	 that	 enable	 it	 to	 be	 securely	 enrolled,	 and	 the	
RAINBOW	Orchestrator	component	(acting	as	the	verifier),	which	is	a	centralized	Docker	
container	 instance	 exposing	 a	 REST	 API	 that,	 upon	 enrolment	 requests	 from	 the	
Dashboard,	executes	the	secure	enrolment	of	a	specified	fog/edge	node	(prover)	based	
on	 the	 secure	Attestation	Key	 (AK)	establishment,	 certifiable	measurements	 (update),	
and	Oblivious	Remote	Attestation	(ORA).	Both	components	are	implemented	in	C++	and	
utilize	IBM’s	TSS	and	software	TPM	as	the	underlying	trusted	component.	
	

	
Figure	10	Secure	Enrolment	of	devices	

The	 current	 implementation	 provides	 the	 functionality	 of	 Attestation	 by	 Quote	 []	 for	
enabling	the	secure	establishment	of	trust	between	deployed	fog/edge	nodes	wanting	to	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 24 of 57

Copyright © Rainbow Consortium Partners 2020

access	 the	 network.	 The	 attached	 SW-based	 TPM	 authenticates	 the	 evidence	 of	 the	
integrity	of	the	state	of	the	service	binary	images	running	inside	the	devices.	Key	features	
provided	include	the:	(i)	possibility	to	distinguish	which	device	is	compromised	so	that	
not	 trust	 relationship	 can	 be	 stablished	with	 the	 other	 nodes	 in	 the	 network,	 (ii)	 the	
possibility	 for	 low-level	 fine-grained	 tracing	 capability,	 and	 (iii)	 S-ZTP	 capability	 for	
privacy-preserving	attestation.	The	former	is	a	significant	feature	because,	once	a	device	
is	 compromised,	 it	 can	 be	 immediately	 retracted	 and	 replaced	 by	 the	 Orchestrator	
without	 affecting	 the	 entire	 Service-Graph	Chain	 (SGC),	 thus,	 catering	 to	 efficient	 SGC	
management	 and	 flexible	 slicing.	 The	 latter	 enables	 the	 integrity	 verification	 of	 a	
designated	 device	 without	 conveying	 any	 information	 on	 its	 configuration	 to	 other	
nodes/entities	that	may	be	acting	as	the	verifier.	This	is	of	paramount	importance	in	fog-
based	environments,	such	as	 the	one	envisioned	 in	 the	smart	manufacturing	use	case,	
where	the	role	of	the	verifier	can	be	enacted	by	the	cluster	head	of	each	manufacturing	
floor;	 in	 this	 case,	 each	 cluster	 head	 should	 be	 able	 to	 have	 verifiable	 evidence	 on	 the	
correctness	of	a	device	without	the	need	to	know	its	exact	configuration.	

In	a	nutshell,	once	a	attestation	request	is	received	(either	by	the	administrator	through	
the	Dashboard	for	attesting	a	specific	device	or	set	of	devices	or	by	a	new	device	wanted	
to	be	enrolled	in	the	overall	network),	the	Orchestrator	initiates	the	attestation	process.	
In	 the	 first	 step,	 the	 Orchestrator	 proactively	 determines	 the	 device’s	 expected	
configuration	state	by	accumulating	 the	artificial	vPCR	construct	of	 the	corresponding	
state	that	a	device	needs	to	be	prior	to	be	enrolled	in	the	network	(essentially,	a	whietelist	
of	service	binaries	that	need	to	have	been	loaded	in	the	device).	The	Orchestrator	then	
requests	 the	device	 to	 similarly	accumulate	 its	PCRs	 to	 reflect	potential	 changes.	This	
update	request	contains	only	the	PCR	index	i	that	must	be	updated	and	a	configuration	
file	 identifier,	 ID,	 to	 measure.	 Upon	 receiving	 such	 update	 requests,	 the	 device	 then	
invokes	 the	RAINBOW	Monitoring	Agent	 (Section	3.2.1.2.5)	 to	measure	 the	 requested	
file(s)	 and	 subsequently	 invokes	 the	 SW-based	 TPM	 to	 extend	 PCR	 i	 with	 the	 new	
measurement.	 The	 extracted	 PCR	 Quote	 is	 then	 sent	 back	 to	 the	 orchestrator	 for	
verification.	

2.2.11.1 Integration and Component Dependencies

The	 components	 (available	 in	 the	 RAINBOW	 attestation	 GitLab	 repository)	 are	 self-
contained	 and	 include	Dockerfiles	which	 ensure	 that	 the	 necessary	 dependencies	 are	
installed	 in	 the	Docker	 images	 to	ensure	correct	execution.	The	RAINBOW	Attestation	
service	relies	on	the	correct	tracing	and	extraction	of	the	configuration	properties	to	be	
attested	(e.g.,	list	of	loaded	service	binaries).	This	output	is	provided	by	the	RAINBOW	
Monitoring	Agent.	Furthermore,	as	aforementioned,	the	RAINBOW	Orchestrator	is	also	a	
core	part	of	the	entire	attestation	process	since	this	entity	is	acting	as	the	verifier.	

2.2.11.2 Component Packaging and Distribution

The	components	are	packaged	as	separate	Docker	containers	and	include	Dockerfiles	and	
docker-compose	files	for	installation.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 25 of 57

Copyright © Rainbow Consortium Partners 2020

2.2.11.3 Component Installation & Deployment

Both	components	(the	prover	and	Orchestrator)	are	built	by	executing	either	docker	build	
or	docker-compose	build.	The	components	are	started	by	executing	either	docker	run	or	
docker-compose	up.		
The	 prover	 is	 deployed	 on	 fog/edge	 nodes,	 whereas	 the	 centralized	 Orchestrator	
component	is	deployed	as	a	centralized	instance	at	the	Orchestrator-side.	
	

2.3 Early Release Status

For	 this	 first	 release	 of	 RAINBOW,	 a	 prototype	 of	 the	 platform	 has	 been	 deployed,	
composed	of	the	components	developed	so	far	and	with	partial	 integration	of	them	to	
achieve	basic	functionalities	of	the	platform.		

The	focus	of	the	early	release	was	to	support	functionalities	as	the	proper	definition	of	
application	graphs	and	their	deployment	over	cloud	and	edge	resources,	thus	allowing	
the	planning	and	the	execution	of	the	first	prototypes	of	the	RAINBOW	demonstrators.	

Also,	besides	the	basic	functionality	of	deployment,	this	early	release	supports	scaling	of	
the	service	graphs	based	on	SLOs	that	consider	different	metrics,	such	as	CPU	utilization,	
RAM,	etc.	Furthermore,	the	attestation	security	enabler	is	supported,	through	which	we	
can	attest	either	the	devices	that	want	to	join	the	cluster	or	the	pre-existing	ones.	This	
will	aid	us	to	accomplish	the	Secure	Enrolment	of	the	new	devices	in	the	second	release.	
Furthermore,	 in	 the	 Early	 Release,	 we	 provide	 the	 Analytics	 Service,	 which	 helps	 us	
process	data	to	extract	real-time	analytic	insights	from	all	the	huge	amount	of	monitoring	
data	 collected	 from	 the	 resources	 and	 the	 deployed	 applications.	 This	 is	 achieved	 by	
utilizing	the	Analytic	workers	deployed	in	each	node	as	also	the	Data	Storage	and	Sharing	
service	that	has	also	been	provided	in	the	early	release.	

Finally,	the	deletion	of	the	deployed	service	graphs	has	already	been	supported	in	order	
to	allow	the	clean-up	of	the	Kubernetes	cluster,	thus	avoiding	any	unneeded	costs.	

2.3.1 Interface’s implementation Status

The	 following	 table	 provides	 a	 recap	 of	 the	 integration	 status	 among	 the	 interfaces	
provided	by	the	platform	components.	
	

Table	1	Interfaces	Status	

Reference	
Code	

Name		 Responsibilities	 Status	

DSS_01	 Data	 Ingestion	 AUTH	 Interface	is	available	for	
usage	

DSS_02	 Data	Extraction	 AUTH	 Interface	is	available	for	
usage	

CS_01	 Pre-deployment	
Constraint	Solver	

TUW	 Planned	for	the	second	and	
final	releases	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 26 of 57

Copyright © Rainbow Consortium Partners 2020

Reference	
Code	

Name		 Responsibilities	 Status	

DM_01	 Service	Graph	
Deployment	
Template	Interface	

TUW	 Integrated	

DM_02	 Policy	Enforcement	
Interface	

TUW	 Planned	for	the	second	and	
final	releases	

OLM_01	 Scheduler	 TUW	 Integrated	

OLM_02	 SLO	Manager	 TUW	 Integrated	

OLM_03	 SLO	Controller	 TUW	 Integrated	

OLM_04	 Elasticity	strategy	
Controller	

TUW	 Integrated	

RM_01	 Resources	Registry	 TUW	 Planned	for	the	second	and	
final	releases	

MON_01	 Monitoring	
Interface	

UCY/AUTH	 Completed.	Monitoring	API	
for	extracting	real-time	and	
historical	monitoring	data	
from	a	fog	node	is	available	
through	a	REST	API	exposed	
by	the	Storage	Agent	of	each	
fog	node.	API	described	in	
detail	in	D4.1	

FSA_01	 Fog	Service	
Analytics	Interface	

UCY	 Completed.	Despite	the	fact	
that	users	can	submit	
analytic	queries	and	entire	
jobs	for	execution	through	
the	RAINBOW	Dashboard,	a	
REST	API	is	also	provided	
for	Service	Developers.	

MRP_01	 Mesh	Routing	
Ιnterface	

UBI	 Integrated	

SP_01	 Sidecar	Proxy	
Interface	

UBI	 Integrated	

SE_01	 Secure	Enrolment	
Agent	

DTU	 Completed.	A	centralized	
REST	API	is	made	available	
which	executes	the	secure	
enrolment	of	fog/edge	nodes	
as	described	in	D2.3a.	

SE_02	 Control-Flow	
Attestation	Agent	

UBI	 Planned	for	the	second	and	
final	releases	

SE_03	 Multi-level	Detailed	
Tracing	Agent	

UBI/DTU	 Tracing	for	the	monitoring	of	
device	configuration	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 27 of 57

Copyright © Rainbow Consortium Partners 2020

Reference	
Code	

Name		 Responsibilities	 Status	

properties	is	implemented	in	
the	first	release.	Tracing	
capabilities	focusing	on	the	
introspection	of	the	
execution	of	a	device	(to	be	
used	for	the	Control-flow	
Attestation),	is	planned	for	
the	final	relase	

SE_04	 Direct	Anonymous	
Attestation	Agent	

DTU	 Code	is	described	in	D2.3a,	
but	integration	with	
RAINBOW	is	planned	for	the	
second	release	

SE_05	 Key	Management	
Interface	

IFAT	 Code	is	described	in	D2.3a.	
Further,	DAA	uses	key	
management	functionality.	
For	CJDNS	we	have	to	do	
some	additional	research,	
e.g.	if	the	keys	have	to	be	
stored	within	the	TPM.	
Integration	with	the	
Components	is	planned	for	
the	second	release.	

2.3.2 Integrated Orchestration Flow

With	 this	 section,	 we	 want	 to	 assist	 the	 reader	 of	 this	 document	 and	 the	 users	 of	
RAINBOW	in	understanding	how	the	integrated	platform	works.	

At	this	early	release,	the	Service	Graph	Editor	part	of	the	Dashboard	has	been	created.	
This	 is	 fully	 integrated	with	the	rest	of	 the	platform	and	supports	most	of	 the	current	
features	 of	 the	 other	 components	 that	 are	 needed.	 The	 deployment	 lifecycle	 is	
implemented,	and	all	the	needed	components	for	the	first	release	are	integrated	from	the	
Dashboard	 to	 the	 actual	 orchestrator.	 To	 complete	 a	 deployment	 lifecycle,	 the	 User	
creates	the	Service	Graph	through	the	Dashboard;	once	the	deployment	button	is	pressed,	
the	 service	 graph	 is	 sent	 to	 the	 backend,	 which	 in	 turn	 sends	 it	 to	 the	 Deployment	
manager	for	now.	From	then	on,	the	Orchestration	Lifecycle	Manager	start	the	spawning	
of	the	Service	Graph	nodes	using	the	Kubernetes	(Resource	Manager).	

The	abovementioned	interaction	is	also	presented	in	the	sequence	diagram	depicted	in	
Figure	11.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 28 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	11	Sequence	diagram	for	RAINBOW	Deployment	

After	 the	 deployment	 succeeds,	 the	 monitoring	 mechanisms	 collect	 any	 potential	
application-level	metrics	as	also	continues	to	collect	the	system-level	metrics	and	stores	
them	in	the	Data	Storage	and	Sharing	component.	Those	metrics	are	later	used	from	other	
components	for	decision	making.	SLOs	are	supported,	which	helps	to	scale	the	Service	
Graph.	Currently,	for	the	SLOs	we	support	the	scalability	of	the	application	based	on	some	
metrics	 that	 the	 Data	 Storage	 and	 Sharing	 component	 are	 fetching,	 but	 although	 the	
Policy	Editor	is	partly	implemented,	it	is	not	integrated	with	the	rest	of	the	platform.	So,	
currently,	the	SLO	works	by	manually	applying	the	SLO	descriptors	through	YAML	files.	

The	abovementioned	interaction	is	also	presented	in	the	sequence	diagram	of	Figure	12.	

	
Figure	12	Sequence	diagram	for	RAINBOW	scaling	

Undeployment	 function	 also	 supported.	 More	 specifically,	 through	 the	 RAINBOW	
Dashboard	the	user	can	select	which	Service	Graph	to	undeploy.	The	Dashboard	forwards	
the	 undeployment	 command	 to	 the	 backend,	 which	 then	 interacts	 with	 Kubernetes	
(Resource	Manager)	to	undeploy	the	specified	Service	graph.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 29 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	13	Sequence	diagram	for	undeployment	of	an	application	deployed	with	RAINBOW		

	

2.3.3 Rainbow Unified Dashboard

RAINBOW	Platform,	including	the	Unified	Dashboard,	have	been	integrated	and	deployed	
as	a	confidential	prototype.	Still,	 for	the	sake	of	clarity	of	the	reader,	we	present	some	
basic	parts	of	the	Dashboard	implemented	for	this	first	release,	with	a	flow	presenting	
how	an	application	is	defined	as	a	graph,	configured,	deployed	and	how	it	scales.		

At	first,	a	user	that	visits	the	RAINBOW	Dashboards	views	an	overview	of	the	available	
resources	and	monitoring	information	from	deployed	application,	as	depicted	in	Figure	
14.	

	
Figure	14	Main	page	of	the	RAINBOW	Dashboard		

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 30 of 57

Copyright © Rainbow Consortium Partners 2020

The	user	is	provided	with	the	available	components	as	depicted	in	the	figure	below.	

	
Figure	15	Components	List	in	the	RAINBOW	Dashboard	

A	user	can	add	or	edit	a	component,	as	depicted	in	Figure	16	and	Figure	17	below.	

	
Figure	16	Create	or	edit	components	(defining	architecture)	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 31 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	17	Create	or	edit	components	(providing	distribution	parameters)	

With	components	defined,	the	user	can	create	the	application	graphs	(see	figure	below)	
that	are	then	stored	as	templates.	

	
Figure	18	The	graph	editor	of	RAINBOW	Dashboard	

The	 application	 template	 can	 then	 be	 used	 for	 the	 creation	 of	 a	 new	 deployment,	 as	
depicted	in	the	figure	below.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 32 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	19	A	deployment	in	process	in	the	RAINBOW	Dashboard	

Once	the	application	is	deployed,	it	is	also	shown	in	the	list	of	application	instances,	as	
depicted	in	the	figure	below.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 33 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	20	Completed	deployments	list	in	RAINBOW	Dashboard	

User	can	define	the	elasticity	policies	that	desire	once	the	application	is	deployed,	using	
the	dedicated	editor,	as	depicted	in	the	figure	below.	

	
Figure	21	Defining	policies	in	the	RAINBOW	Dashboard	

Finally,	if	a	policy	is	in	place,	the	scaling	can	happen	once	the	SLO	is	violated.	The	scaling	
results	are	also	presented	in	the	Dashboard,	as	depicted	in	the	figure	below.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 34 of 57

Copyright © Rainbow Consortium Partners 2020

	

	
Figure	22	A	scaling	performed	and	shown	in	the	RAINBOW	Dashboard	

	
	
	
	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 35 of 57

Copyright © Rainbow Consortium Partners 2020

3 Technical Evaluation and Quality Assurance

In	this	section,	we	provide	an	overview	of	the	work	performed	so	far	for	the	achievement	
of	 the	 first	 platform	 release,	 in	 terms	 of	 the	 development	 and	 integration	 process	
followed,	the	software	quality	assessment	process,	and	the	testing	procedures.		

3.1 Continuous Integration and Quality Assurance

The	flow	the	consortium	will	follow	for	the	Continuous	Integration	and	Quality	Assurance	
of	the	developed	platform	has	been	presented	in	D5.1.	This	section	provides	a	snapshot	
of	the	process,	focusing	on	the	tools	used	for	enabling	the	CI	part	of	RAINBOW.	

3.1.1 Version Control System – Gitlab

As	 already	 presented	 above,	 the	 consortium	 has	 selected	 Gitlab	 as	 the	 primary	 VCS	
system.	The	Gitlab	group	that	has	been	created	and	hosts	all	components’	repositories	is	
depicted	in	Figure	23.			

	
Figure	23	Gitlab	group	and	repositories	for	RAINBOW	project	

The	RAINBOW	project	source	code	is	currently	organised	in	the	following	repositories:	
• rainbow-scheduler	contains	all	source	code	of	the	RAINBOW	Scheduler,	
• rainbow-orchestration	contains	all	source	code	of	the	RAINBOW	Orchestrator,	
• rainbow-analytics	contains	all	source	code	of	the	RAINBOW	analytics	service,	
• rainbow-monitoring	 contains	 the	 source	 code	 of	 the	 RAINBOW	 monitoring	

applications,	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 36 of 57

Copyright © Rainbow Consortium Partners 2020

• rainbow-storage	 contains	 all	 the	 source	 code	 and	 configurations	 of	 the	
RAINBOW	storage	mechanisms,	

• and	rainbow-attestation,	which	contains	all	 the	 source	 code	of	 the	RAINBOW	
attestation	mechanisms.	

Currently,	the	Gitlab	group	and	all	repositories	are	private	with	access	only	to	consortium	
members.	 After	 the	 finalization	 of	 IPR	 related	 agreements	within	 the	 consortium,	 the	
group	and	some	of	the	repositories	(that	will	offer	components	with	open-source	licence)	
will	be	made	public.	

3.1.2 Container Registry

For	the	distribution	of	components,	as	explained	 in	D5.1,	we	use	docker	registry.	This	
registry	is	hosted	in	the	project’s	GitLab	group,	as	depicted	in	the	figure	below.	
	

	
Figure	24	Container	Images	available	at	the	project’s	Container	Registry	

	

3.1.3 Issue Tracking – Gitlab

GitLab	Issues	is	the	issue/bug	tracking	toolset	that	RAINBOW	project	uses.	The	GitLab	
issues	 of	 the	 RAINBOW	 Project	 are	 located	 at	 https://gitlab.com/groups/rainbow-
project1/-/issues	(see	Figure	25),	whose	access	is	limited	to	the	consortium	developers	
for	the	time	being.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 37 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	25	Issues	at	the	project’s	GitLab	group	

		

3.1.4 Software Quality Evaluation

As	explained	 in	D5.1,	we	planned	 for	 the	usage	of	SonarQube	 for	 the	software	quality	
evaluation	 part	 of	 the	 platform,	 as	 part	 of	 the	 CI	 process	 of	 the	 project.	 During	 the	
development	of	the	components	for	this	first	release	we	integrated	SonarQube	mainly	for	
the	 components	 of	 the	 orchestration	 layer,	 as	 depicted	 in	 Figure	 26,	 but	 more	
components	will	be	part	of	the	softquare	quality	evaluation	in	the	next	months.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 38 of 57

Copyright © Rainbow Consortium Partners 2020

	
Figure	26	SonarQube	Results	of	major	components		

	

3.2 Testing Procedures of the RAINBOW Early Release

In	 this	 section,	 we	 collect	 the	 results	 related	 to	 the	 unit	 and	 integration	 testing,	 as	
performed	 so	 far.	We	 expect	more	 integration	 testing	 to	 take	 place	 in	 the	 upcoming	
releases	of	the	platform.	Also,	as	part	of	the	testing	plan,	user	testing	will	be	executed	
once	the	RAINBOW	platform	reaches	a	better	maturity	level.	

3.2.1 Unit Testing

Unit	tests	are	the	tool	to	test	the	functional	modules	of	the	developed	software.	Therefore,	
the	developer	of	each	component	needs	to	test	the	components	utilizing	unit	tests	before	
integrating	them	into	the	complete	application.	These	unit	tests	will	run	in	parallel	with	
the	integration	testing.		

3.2.2 Integration Testing

The	 tests	performed	 (manually	 in	most	 cases)	 to	assure	 the	proper	 integration	of	 the	
components	were	designed	based	on	the	interfaces	used	and	are	presented	below.	
	
	
	
	
	
	
	
	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 39 of 57

Copyright © Rainbow Consortium Partners 2020

Table	2	Integration	test	for	receiving	deployment	graphs	

Name		 Service	Graph	Deployment	
Description	 This	test	is	used	to	test	if	deployment	graphs	are	

successfully	provided	to	the	orchestrator	backend	
Reference	Code	 IT_01	
Interfaces	tested	 DM_01	
Preconditions	 A	predefined	application	graph	at	the	Editor	
Components	
involved	

Orchestration	Lifecycle	 	
Manager,	
Orchestration	Repository	
	

Status	 Test	Implemented,	executed	successfully		
	

Table	3	Integration	Test	for	the	assignment	of	pods	to	nodes	

Name		 Schedule	pods	to	nodes	
Description	 This	test	is	used	to		test	if	the	Scheduler	is	able	to	assign	

the	pods	to	the	nodes	that	are	available		
Reference	Code	 IT_02	
Interfaces	tested	 OLM_01	
Preconditions	 A	Service	Graph	deployment	
Components	
involved	

Deployment	Manager,	Resource	manager	
	

Status	 Test	Implemented,	executed	successfully		
	

Table	4	Integration	Test	for	the	proper	send/receive	of	SLO	violation	

Name		 SLO	check	and	violation	trigger	
Description	 This	test	is	used	to	test	if	the	SLO	controller	is	able	to	

check	the	status	of	the	deployment	and	trigger	actions	in	
case	of	any	violation	based	on	the	applied	SLO	

Reference	Code	 IT_03	
Interfaces	tested	 OLM_03	
Preconditions	 A	deployed	Service	Graph	and	an	applied	SLO	
Components	
involved	

SLO	Manager,	Elasticity	Strategy	Controller	

Status	 Test	Implemented,	executed	successfully		
	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 40 of 57

Copyright © Rainbow Consortium Partners 2020

Table	5	Integration	Test	for	the	execution	corrective	elasticity	action	

Name		 Elasticity	Strategy	Controller	counteractions	
Description	 This	test	is	used	to	validate	that	the	Elasticity	Strategy	

Controller	takes	corrective	actions	that	result	from	the	
violation	of	an	SLO	

Reference	Code	 IT_04	
Interfaces	tested	 OLM_04	
Preconditions	 A	deployed	Service	Graph,	an	applied	SLO	and	an	SLO	

violation	trigger	
Components	
involved	

SLO	Controller	
	

Status	 Test	Implemented,	executed	successfully		
	

Table	6	Integration	Test	for	the	extraction	of	monitoring	data	from	the	nodes	

Name		 Monitoring	Data	extraction	
Description	 This	test	is	used	to	validate	that	real-time	and	historical	

data	can	be	extracted	correctly	from	the	nodes.	
Reference	Code	 IT_05	
Interfaces	tested	 MON_01	
Preconditions	 A	deployed	Service	Graph	
Components	
involved	

Orchestrator,	
Analytics	Service,	
	Storage	Service	

Status	 Test	Implemented,	executed	successfully		
	

Table	7	Integration	Test	for	the	secure	enrolment	of	devices	

Name		 Secure	Enrolment	attestation	action	
Description	 This	test	is	used	to	validate	that	a	node	is	secure	in	order	

to	be	enrolled	on	the	cluster	by	attesting	it	and	then	
verifying	it	by	the	orchestrator	

Reference	Code	 IT_06	
Interfaces	tested	 SE_01	
Preconditions	 N/A	
Components	
involved	

Sidecar	proxy	Interface,		
Orchestrator	(acting	as	the	Verifier)	

Status	 Test	Implemented,	executed	successfully		
	
	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 41 of 57

Copyright © Rainbow Consortium Partners 2020

4 Plans for Upcoming Releases

RAINBOW	follows	a	specific	approach	to	implement	the	mechanisms	that	constitute	the	
RAINBOW	framework.	RAINBOW	development	is	a	continuous	process	that	contains	all	
required	discrete	steps	 that	re-assure	quality	during	 the	entire	 lifetime	of	 the	project.	
However,	given	the	time	plan	of	work	in	the	various	WPs,	the	following	integration	time	
plan	is	followed:	

	
Figure	27	Roadmap	for	RAINBOW	Development	

4.1 Second Release

For	the	second	release,	we	expect	that	all	functionalities	will	be	available	for	usage.	Some	
highlights	include.		
1 Policy	Editor	will	be	updated	and	 integrated	with	 the	 rest	of	 the	platform	so	 that	

policies	and	SLOs	can	be	created	and	used	through	it.	
2 Pre-deployment	 constraint	 solver	 to	 be	 implemented	 and	 integrated	 to	 allocate	

specific	compute	nodes	depending	on	the	needs	and	optimize	the	placement	of	the	
deployments.	

3 Integration	 of	 the	 CJDNS	with	 the	 key-management	 and	 the	 secure	 enrolment	 to	
onboard	new	compute	nodes	in	the	cluster	and	verify	that	they	are	safe	to	use.	

4 Overall	optimization	of	the	dashboard	depending	on	the	feedback	gained	from	the	
Users.	

5 Extend	the	support	to	more	complex	SLOs.	

4.2 Final Release

With	all	major	functionalities	 in	place	from	the	second	release,	 for	the	final	 integrated	
version	 to	be	delivered	at	M36,	we	will	provide	 improvements	based	on	 the	 feedback	
derived	from	demonstrators	(WP6).	Also,	the	final	release	will	focus	on	allowing	the	easy	
deployment	of	the	complete	RAINBOW	platform.	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 42 of 57

Copyright © Rainbow Consortium Partners 2020

5 Conclusions

In	this	deliverable,	we	presented	the	implementation	approach	and	the	status	of	1st	the	
RAINBOW	integrated	platform.	For	creating	this	first	prototype,	we	used	the	architecture	
and	 integration	 plan	 as	 presented	 in	 D5.1.	 However,	 as	 the	 components	 were	
implemented	 and	 integrated	 into	 a	 single	 platform,	 some	 updates	 were	 made	 in	 the	
architecture;	 these	were	 presented	 at	 the	 beginning	 of	 section	 2	 to	 better	 reflect	 the	
actual	work	performed.	Then	we	provided	more	details	 about	 the	 components	 of	 the	
platform,	 regarding	 their	 status,	 their	 integration,	 and	 their	 deployment;	 at	 this	 first	
release,	the	components	are	deployed	as	standalone	services,	with	single	setup	options	
being	planned	for	the	interim	and	the	final	release	of	the	platform.	
	
In	addition	to	this	 initial	 technical	presentation,	we	tried	to	provide	the	reader	with	a	
clear	view	of	the	platform's	status	by	explaining	the	provided	functionalities	in	this	first	
release.	For	 this	purpose,	we	also	explained	how	basic	 flows,	such	as	deployment	and	
scaling,	 are	 implemented	 in	 terms	 of	 components’	 interactions	 and	 from	 the	 user	
perspective	by	using	RAINBOW	Dashboard.	
	
Finally,	we	presented	the	initial	results	regarding	the	software	testing	and	the	adoption	
of	the	CI	process	we	had	given	in	D5.1,	along	with	the	plans	for	the	upcoming	releases	of	
the	RAINBOW	platform.	
	
This	 report	 will	 be	 continuously	 updated	 to	 reflect	 the	 development	 progress	 and	
document	the	next	two	releases	of	the	RAINBOW	platform	in	M27	(D5.3)	and	M36	(D5.4).	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 43 of 57

Copyright © Rainbow Consortium Partners 2020

6 References

1. D5.1	Technical	Integration	and	Testing	Plan	
2. D1.2	RAINBOW	Reference	Architecture	
3. https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGEL

OG-1.21.md#v1210	

4. 	https://golang.org/	
5. https://github.com/kubernetes-sigs/kubebuilder	
6. Rainbow	 Container	 Registry:	 https://gitlab.com/rainbow-project1/rainbow-

integration/container_registry	
7. Kubectrl	tool:	https://kubernetes.io/docs/tasks/tools/#kubectl	
8. https://kubernetes.io/docs/concepts/scheduling-eviction/schedulingframework/	
9. https://slocloud.github.io	
10. https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-

controllers/	
11. https://www.optaplanner.org/	
12. https://gitlab.com/groups/rainbow-project1/-/container_registries	
13. Z.	Georgiou,	M.	Symeonides,	D.	Trihinas,	G.	Pallis	and	M.	D.	Dikaiakos,	"StreamSight:	A	

Query-Driven	 Framework	 for	 Streaming	 Analytics	 in	 Edge	 Computing,"	 2018	
IEEE/ACM	 11th	 International	 Conference	 on	 Utility	 and	 Cloud	 Computing	 (UCC),	
2018,	pp.	143-152,	doi:	10.1109/UCC.2018.00023.	

14. D2.2	RAINBOW	Collective	Attestation	Policy	Enablers	Design	
15. D2.3	RAINBOW	Collective	Attestation	&	Runtime	Verification	-	Version	1	

	

	

	
	
	
	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 44 of 57

Copyright © Rainbow Consortium Partners 2020

Annex I: Unit Tests for Early Release

	
Name		 Deploy	Service	Graph	
Description	 This	test	submits	a	RAINBOW	Service	Graph	without	SLOs	to	

the	Deployment	Manager	and	checks	whether	it	creates	the	
expected	deployment	resources.	

Reference	Code	 UT_01	
Responsibilities	 Implementation:	TUW	
Component	 Deployment	Manager	
Input	 Service	Graph	(YAML)	
Output	 Set	of	Kubernetes	Deployment	resources	that	should	be	

created	from	the	Service	Graph	
Status	 Implemented	with	the	Go	testing	package	

	
Name		 Update	Service	Graph	
Description	 This	test	submits	an	updated	Service	Graph	for	an	

application	that	is	already	deployed	and	checks	whether	the	
existing	deployment	resources	are	updated	accordingly.		

Reference	Code	 UT_02	
Responsibilities	 Implementation:	TUW	
Component	 Deployment	Manager	
Input	 Service	Graph	(YAML)	
Output	 Set	of	Kubernetes	Deployment	resources	that	should	be	

updated,	based	on	the	Service	Graph	
Status	 Implemented	with	the	Go	testing	package	

	
Name		 Service	Graph	SLO	Mapping	Creation	
Description	 This	test	submits	a	Service	Graph	with	an	SLO	to	the	

Deployment	Manager	and	ensures	that	the	corresponding	
SLO	Mapping	is	created.	

Reference	Code	 UT_03	
Responsibilities	 Implementation:	TUW	
Component	 Deployment	Manager	
Input	 Service	Graph	(YAML)	
Output	 SLO	Mapping	Custom	Resource	Definition	(CRD)	instance	
Status	 Implemented	with	the	Go	testing	package	

	
	
	
	
	
	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 45 of 57

Copyright © Rainbow Consortium Partners 2020

Name		 Service	Graph	SLO	Mapping	Update	
Description	 This	test	submits	a	Service	Graph	with	an	updated	SLO	for	an	

application	that	is	already	deployed	and	checks	whether	the	
existing	SLO	Mapping	is	updated	accordingly.	

Reference	Code	 UT_04	
Responsibilities	 Implementation:	TUW	
Component	 Deployment	Manager	
Input	 Service	Graph	(YAML)	
Output	 SLO	Mapping	Custom	Resource	Definition	(CRD)	instance	
Status	 Implemented	with	the	Go	testing	package	

	
Name		 Scale	out/in	through	the	Horizontal	Elasticity	Strategy	
Description	 This	test	submits	a	Horizontal	Elasticity	Strategy	CRD	that	is	

supposed	to	trigger	a	scale	out/scale	in	and	checks	if	the	
scaling	operation	is	performed	accordingly.		

Reference	Code	 UT_05	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Lifecycle	Manager	
Input	 Horizontal	Elasticity	Strategy	CRD	instance	
Output	 Updated	Scale	sub-resource	of	the	deployment	object	
Status	 Implemented	with	the	Go	testing	package	

	
Name		 ServiceGraph	Scheduler	Plugin	
Description	 This	test	triggers	the	ServiceGraph	plugin	of	the	RAINBOW	

Kubernetes	scheduler	an	ensures	that	it	loads	the	Service	
Graph	of	the	application	that	the	current	pod	belongs	to.	

Reference	Code	 UT_06	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Scheduler		
Input	 The	pod	to	be	scheduled	
Output	 The	correct	Service	Graph	should	be	available	in	the	pod’s	

scheduling	context	
Status	 Implemented	with	the	Go	testing	package	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 46 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 NetworkQoS	Scheduler	Plugin	
Description	 This	test	triggers	the	NetworkQoS	plugin	of	the	RAINBOW	

Kubernetes	scheduler	an	ensures	that	cluster	nodes	that	do	
not	meet	the	pod’s	requirements	are	filtered	out.		

Reference	Code	 UT_07	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Scheduler	
Input	 Set	of	cluster	nodes,	the	pod	to	be	scheduled,	and	a	Service	

Graph	
Output	 List	of	nodes	that	satisfy	the	network	QoS	requirements.	
Status	 Implemented	with	the	Go	testing	package	

	
Name		 SLO	Control	Loop	
Description	 This	test	ensures	that	the	SLO	Control	Loop	periodically	

executes	all	active	SLOs	and	that	it	handles	errors	within	an	
SLO	properly.	

Reference	Code	 UT_08	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Policy	Managers	
Input	 Set	of	configured	SLO	instances	
Output	 Every	SLO	should	be	evaluated	once	per	evaluation	interval	

and	errors	in	one	SLO	should	not	prevent	other	SLOs	from	
being	evaluated	

Status	 Implemented	with	Jest	
	

Name		 Watch	Manager	
Description	 This	test	configures	the	Watch	Manager	to	observe	instances	

of	a	particular	SLO	Mapping	CRD	and	ensures	that	
additions/changes/deletions	of	a	CRD	instance	trigger	the	
correct	event	handlers.	

Reference	Code	 UT_09	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Policy	Managers	
Input	 SLO	Mapping	Type	and	respective	CRD	instances	
Output	 Method	calls	to	the	registered	event	handlers	
Status	 Implemented	with	Jest	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 47 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Transformation	Service	
Description	 This	test	ensures	that	the	Transformation	Service	used	for	

converting	between	Kubernetes	resources	and	SLO	Controller	
resource	instances	transforms	the	objects	properly.	

Reference	Code	 UT_10	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Policy	Managers	
Input	 Kubernetes	CRDs	and	SLO	Controller	Objects	
Output	 The	transformed	SLO	Controller	objects	or	Kubernetes	CRDs	

respectively	
Status	 Implemented	with	Jest	

	
Name		 CPU	Usage	SLO	Controller	
Description	 This	test	triggers	evaluations	the	CPU	Usage	SLO,	with	input	

causing	it	to	report	SLO	fulfilment,	SLO	violation	with	more	
resources	needed,	and	SLO	violation	with	fewer	resources	
needed.	

Reference	Code	 UT_11	
Responsibilities	 Implementation:	TUW	
Component	 Orchestration	Lifecycle	Manager	–	Policy	Managers	
Input	 SLO	Mapping	and	CPU	monitoring	data	
Output	 A	Horizontal	Elasticity	Strategy	CRD	that	reflects	the	

compliance	state	of	the	SLO	
Status	 Implemented	with	Jest	

	
Name		 Cache	Creation	
Description	 This	test	is	used	to	verify	the	Ignite	instance	deployment	and	

the	creation	of	the	necessary	caches.	
Reference	Code	 UT_12	
Responsibilities	 Implementation:	AUTH	
Component	 Data	Storage	and	Sharing	
Input	 -	
Output	 Created	cache	names	
Status	 Implemented	with	Junit	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 48 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Add	metric	
Description	 This	test	is	used	to	verify	the	correctness	of	the	Ingestion	

interface	through	a	POST	request	for	data	storing.	
Reference	Code	 UT_13	
Responsibilities	 Implementation:	AUTH	
Component	 Data	Storage	and	Sharing	
Input	 A	Json	file	of	the	data	to	be	ingested	
Output	 A	message	that	the	ingestion	was	successful	
Status	 Implemented	with	Junit	

	
Name		 Get	latest	Metric	
Description	 This	test	is	used	to	verify	the	correctness	of	the	Extraction	

interface	through	a	POST	request	that	includes	a	stored	
metric.	

Reference	Code	 UT_14	
Responsibilities	 Implementation:	AUTH	
Component	 Data	Storage	and	Sharing	
Input	 A	Json	file	of	the	data	to	be	extracted	with	the	necessary	flag	

for	the	latest	value	
Output	 A	Json	file	with	the	latest	value	and	metadata	on	the	

requested	data	
Status	 Implemented	with	Junit	

	
Name		 Get	historical	Metric	
Description	 This	test	is	used	to	verify	the	correctness	of	the	Extraction	

interface	through	a	POST	request	that	includes	a	stored	
metric.	

Reference	Code	 UT_15	
Responsibilities	 Implementation:	AUTH	
Component	 Data	Storage	and	Sharing	
Input	 A	Json	file	of	the	data	to	be	extracted	with	the	necessary	

fields	that	denote	the	time	period	in	question	
Output	 A	Json	file	with	the	values	and	metadata	on	the	requested	

data	for	the	specified	time	period	
Status	 Implemented	with	Junit	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 49 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Get	non-existent	Metric	
Description	 This	test	is	used	to	verify	the	correctness	of	the	Extraction	

interface	through	a	POST	request	that	includes	a	metric	that	
is	not	stored	in	the	database.	

Reference	Code	 UT_16	
Responsibilities	 Implementation:	AUTH	
Component	 Data	Storage	and	Sharing	
Input	 A	Json	file	of	the	data	to	be	extracted	
Output	 A	Json	file	with	no	data	fields	
Status	 Implemented	with	Junit	

	
Name		 Activate	Monitoring	Agent		
Description	 This	test	is	used	to	assess	if	the	Monitoring	Agent	daemon	

instance	is	deployed	and	activated	on	the	host	environment	
(fog	node).	

Reference	Code	 UT_17	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 Monitoring	configuration	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Activate	Monitoring	Probe		
Description	 This	test	is	used	to	assess	if	a	requested	Monitoring	Probe	

can	be	instantiated,	configured,	and	attached	to	the	
Monitoring	Agent	

Reference	Code	 UT_18	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	

	
Input	 Probe	id,	name,	and	periodicity	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 50 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Attempt	to	Activate	Non-Existent	Monitoring	Probe		
Description	 This	test	is	used	to	assess	if	a	request	to	activate	a	

Monitoring	Probe	that	does	not	exist	can	be	handled	
gracefully	

Reference	Code	 UT_19	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 Probe	id	
Output	 Failed	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Get	Monitoring	Probe’s	Metrics	
Description	 This	test	is	used	to	assess	if	a	Monitoring	Probe	is	collecting	

metrics	and	the	metrics	are	of	the	correct	type		
Reference	Code	 UT_20	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 None	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Change	Monitoring	Probe	Periodicity	
Description	 This	test	is	used	to	assess	if	a	Monitoring	Probe’s	periodicity	

can	be	altered	at	runtime	
Reference	Code	 UT_21	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 Periodicity	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Get	Monitoring	Probes	
Description	 This	test	is	used	to	assess	if	a	Monitoring	Agent	can	access	its	

monitoring	probes		
Reference	Code	 UT_22	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 None	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 51 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Export	Monitoring	Data	
Description	 This	test	is	used	to	assess	if	a	Monitoring	Agent	can	correctly	

format	and	export	monitoring	data	
Reference	Code	 UT_23	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 Exporter	(e.g.,	RAINBOW-Storage)	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Deactivate	Monitoring	Probe	
Description	 This	test	is	used	to	assess	if	a	Monitoring	Agent	can	

gracefully	deactivate	a	requested	monitoring	probe	
Reference	Code	 UT_24	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 Monitoring	probe	id	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Deactivate	Monitoring	Agent	
Description	 This	test	is	used	to	assess	if	a	Monitoring	Agent	can	be	

deactivated		
Reference	Code	 UT_25	
Responsibilities	 UCY	
Component	 RAINBOW	Monitoring	
Input	 Deactivate	status	
Output	 Success	response	code	
Status	 Implemented	with	python	unit	test	

	
Name		 Compile	Correct	StreamSight	Query	into	Analytic	Job		
Description	 This	test	is	used	to	assess	if	a	correctly	given	StreamSight	

query	can	compile	into	a	Storm	job.	
Reference	Code	 UT_26	
Responsibilities	 UCY	
Component	 StreamSight	

(RAINBOW	Distributed	Processing	Engine	and	Fog	Service	
Analytics	Service)	

Input	 StreamSight	query	
Output	 Storm	job	
Status	 Implemented	with	java	junit	

	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 52 of 57

Copyright © Rainbow Consortium Partners 2020

Name		 Handle	incorrect	StreamSight	Query		
Description	 This	test	is	used	to	assess	if	a	given	incorrect	query	can	be	

gracefully	handled	by	StreamSight.	
Reference	Code	 UT_27	
Responsibilities	 UCY	
Component	 StreamSight	

(RAINBOW	Distributed	Processing	Engine	and	Fog	Service	
Analytics	Service)	

Input	 Non-compliant	StreamSight	query	
Output	 Bad	response	code	
Status	 Implemented	with	java	junit	

	
Name		 Attach	Data	Stream		
Description	 This	test	is	used	to	assess	if	a	-denoted	in	a	query-	data	

source	can	be	attached	to	a	Storm	job	
Reference	Code	 UT_28	
Responsibilities	 UCY	
Component	 StreamSight	

(RAINBOW	Distributed	Processing	Engine	and	Fog	Service	
Analytics	Service)	

Input	 StreamSight	query	
Output	 Success	response	code	
Status	 Implemented	with	java	junit	

	
Name		 Attach	Insight	Output	Stream		
Description	 This	test	is	used	to	assess	if	a	-denoted	in	a	query-	output	

destination	can	receive	insights	from	a	Storm	job	
Reference	Code	 UT_29	
Responsibilities	 UCY	
Component	 StreamSight	

(RAINBOW	Distributed	Processing	Engine	and	Fog	Service	
Analytics	Service)	

Input	 StreamSight	query	
Output	 Success	response	code	
Status	 Implemented	with	java	junit	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 53 of 57

Copyright © Rainbow Consortium Partners 2020

Name		 AMQP	Broker	Server	
Description	 This	test	is	used	to	monitor	the	flow	of	messages	through	the	

AMQP	Broker	server	and	to	measure	the	end-to-end	latency	
Reference	Code	 UT_30	
Responsibilitie
s	

Implementation:	POLITO	

Component	 AMQP	Broker	(Demonstrator	#2)	
Input	 CAM	and	DENM	incoming	message	flow	
Output	 CAM	and	DENM	message	end-to-end	latency	
Status	 Implemented	with	Python	

	
Name		 City	Aggregator	Hazardous	Events	Localizer	
Description	 This	is	a	qualitative	test	of	the	hazardous	events	localizer	

functionality	of	the	City	Aggregator	platform		
Reference	Code	 UT_31	
Responsibilitie
s	

Implementation:	POLITO	

Component	 City	Aggregator	platform		(Demonstrator	#2)	
Input	 CAM	and	DENM	incoming	message	flow	
Output	 Hazardous	events	localization	displayed	on	the	City	

Aggregator	platform	
Status	 Implemented	with	Junit	

	
	

Name		 City	Aggregator	Vehicle	Localizer	
Description	 This	is	a	qualitative	test	of	the	vehicle	localization	

functionality	of	the	City	Aggregator	platform	
Reference	Code	 UT_32	
Responsibilitie
s	

Implementation:	POLITO	

Component	 City	Aggregator	platform	(Demonstrator	#2)	
Input	 CAM	and	DENM	incoming	message	flow	
Output	 Live	vehicles	position	displayed	on	the	City	Aggregator	

platform	
Status	 Implemented	with	Junit	

	
	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 54 of 57

Copyright © Rainbow Consortium Partners 2020

Name		 Create	Attestation	Key	
Description	 This	test	is	used	to	check	that	an	Attestation	Key	was	created	

successfully	on	a	remote	system.	
Reference	Code	 UT_33	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrolment	Agent	
Input	 Policy	Digest	(TPM2B_DIGEST),	Object	Attributes	

(TPMA_OBJECT)	
Output	 Attestation	Key	Certificate	(CertifyCreation_Out)	
Status	 Implemented	with	Junit	

	
Name		 Verify	Attestation	Key	Creation	
Description	 This	test	is	used	to	verify	that	a	remotely	created	Attestation	

Key	was	created	correctly	by	inspecting	and	validating	its	
Attestation	Key	Certificate.	

Reference	Code	 UT_34	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrollment	Agent	
Input	 Attestation	Key	Certificate	(CertifyCreation_Out),	Attestation	

Key	Public	(TPM2B_PUBLIC),	Signing	Key	Public	
(TPM2B_PUBLIC),	Policy	Digest	(TPM2B_DIGEST),	Object	
Attributes	(TPMA_OBJECT)	

Output	 Boolean	true	if:	(1)	the	Attestation	Key	Certificate’s	internal	
certifyInfo	(TPM2B_ATTEST)	structure	was	created	in	a	
TPM,	signed	by	the	inverse	of	the	supplied	Signing	Key	Public,	
and	is	over	the	supplied	Attestation	Key	Public,	and	(2)	the	
supplied	Attestation	Key	Public	is	bound	to	the	supplied	
policy	digest	and	carries	the	supplied	properties.	False	
otherwise.	

Status	 Implemented	with	Junit	
	

Name		 Add	normal	PCR	
Description	 This	test	is	used	to	register	a	normal	Platform	Configuration	

Register	(PCR)	on	a	remote	system.	
Reference	Code	 UT_35	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrollment	Agent	
Input	 PCR	Index	(UINT32)	
Output	 Not	applicable	
Status	 Implemented	with	JavaScript	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 55 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Add	NV-based	PCR	
Description	 This	test	is	used	to	register	and	verify	the	registration	of	a	

non-Volatile-based	Platform	Configuration	Register	on	a	
remote	system.	

Reference	Code	 UT_36	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrollment	Agent	
Input	 NV	PCR	Index	(UINT32),	Attributes	(TPMA_NV),	Policy	Digest	

(TPM2B_DIGEST),	Initial	Value	(TPM2B_MAX_NV_BUFFER)	
Output	 NV	Certificate	(NV_Certify_Out)	
Status	 Implemented	with	Junit	

	
Name		 Verify	NV-based	PCR	Creation	
Description	 This	test	is	used	to	verify	that	a	remotely	created	non-

Volatile-based	Platform	Configuration	Register	was	created	
correctly	by	inspecting	and	validating	its	NV	Certificate.	

Reference	Code	 UT_37	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrolment	Agent	
Input	 Expected	NV	Public	Area	(TPMS_NV_PUBLIC),	NV	Certificate	

(NV_Certify_Out),	Signing	Key	Public	(TPM2B_PUBLIC),	
Expected	NV-based	PCR	Value	(TPM2B_MAX_NV_BUFFER)	

Output	 Boolean	true	if	the	NV	Certificate’s	internal	certifyInfo	
(TPM2B_ATTEST)	structure:	(1)	is	created	in	a	TPM,	(2)	is	
signed	by	the	inverse	of	the	supplied	Signing	Key	Public,	(3)	is	
over	the	supplied	Expected	NV	Public	Area,	and	(4)	contains	
the	Expected	NV-based	PCR	Value.	False	otherwise.	

Status	 Implemented	with	Junit	
	

Name		 Remeasure	Configuration	
Description	 This	test	is	used	to	request	a	remote	system	to	remeasure	its	

configuration.	
Reference	Code	 UT_38	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrolment	Agent	
Input	 PCR	Index	(UINT32),	NV-based	(Bool),	Fully	Qualified	Path	

Name	(FQPN),	Policy	Digest	(TPM2B_DIGEST),	Signed	Policy	
Digest	(TPM2B_DIGEST),	Policy	Digest	Signature	
(TPMT_SIGNATURE)	

Output	 Session	Audit	Digest	(GetSessionAuditDigest_Out)	
Status	 Implemented	with	Junit	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 56 of 57

Copyright © Rainbow Consortium Partners 2020

	
Name		 Verify	Configuration	Remeasurement	
Description	 This	test	is	used	to	verify	that	a	remote	system	remeasured	

its	configuration	and	extended	the	correct	PCR	by	inspecting	
and	validating	the	Session	Audit	Digest.	

Reference	Code	 UT_39	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrolment	Agent	
Input	 Session	Audit	Digest	(GetSessionAuditDigest_Out),	Signing	

Key	Public	(TPM2B_PUBLIC),	PCR	Index	(UINT32),	NV-based	
(Bool),	Correct	FQPN	Digest	(TPM2B_DIGEST)	

Output	 Boolean	true	if	the	Session	Audit	Digest’s	internal	auditInfo	
(TPM2B_ATTEST)	structure:	(1)	is	created	in	a	TPM,	(2)	is	
signed	by	the	inverse	of	the	supplied	Signing	Key	Public,	(3)	
contains	the	expected	audit	digest,	which	is	calculated	by	
simulating	the	internal	updates	to	the	session’s	audit	digest	
(see	Section	35	of	Part	1	of	TCG’s	TPM	2.0	documentation)	
when	running	the	command	TPM2_PCR_Extend	(if	NV-based	
is	true)	or	TPM2_NV_Extend	(if	NV-based	is	false)	and	
supplying	the	Correct	FQPN	Digest	as	an	input	parameter.	
False	otherwise.	

Status	 Implemented	with	Junit	
	

Name		 Remote	Attestation	
Description	 This	test	is	used	to	request	a	remote	system	to	attest	its	state.	
Reference	Code	 UT_40	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrollment	Agent	
Input	 Not	applicable	
Output	 Nonce	Signature	(TPMT_SIGNATURE)	
Status	 Implemented	with	Junit	

	 	

	 	

 Project No 871403 (RAINBOW)

 D5.2 – RAINBOW Integrated Platform and Unified Dashboard - Early
Release

 Date: 07.07.2021
 Dissemination Level: PU

	

Page 57 of 57

Copyright © Rainbow Consortium Partners 2020

Name		 Validate	Remote	Attestation	
Description	 This	test	is	used	to	verify	the	state	of	a	remote	system	using	

only	its	Attestation	Key	Public.	
Reference	Code	 UT_41	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrollment	Agent	
Input	 Nonce	Digest	(TPM2B_DIGEST),	Nonce	Signature	

(TPMT_SIGNATURE),	Attestation	Key	Public	
(TPM2B_PUBLIC)	

Output	 Boolean	true	if	the	Nonce	Signature:	(1)	is	signed	by	the	
inverse	of	the	supplied	Attestation	Key	Public,	and	(2)	is	over	
the	supplied	Nonce	Digest.	False	otherwise.	

Status	 Implemented	with	Junit	
	

Name		 Remove	PCR	
Description	 This	test	is	used	to	notify	a	remote	system	to	remove	a	

Platform	Configuration	Register	(PCR)	from	consideration.	
For	a	Non-Volatile	(NV)-based	PCR,	the	remote	system	is	also	
presented	with	a	Signed	Policy	Digest	(authorization)	to	
allow	the	deletion	the	policy-protected	NV-based	PCR	using	
the	TPM2_NV_UndefineSpaceSpecial	command	(see	Part	1	
and	3	of	TCG’s	TPM	2.0	documentation	for	details).	

Reference	Code	 UT_42	
Responsibilities	 Implementation:	DTU	
Component	 Secure	Enrollment	Agent	
Input	 PCR	Index	(UINT32),	NV-based	(Bool),	cpHashA	

(TPM2B_DIGEST),	aHash	Signature	(TPMT_SIGNATURE),	
Policy	Digest	(TPM2B_DIGEST),	Policy	Digest	Signed	
(TPM2B_DIGEST),	Policy	Digest	Signature	
(TPMT_SIGNATURE)	

Output	 Not	applicable	
Status	 Implemented	with	Junit	

	
	
	
	
	
	

