®

RAINBOW

Project Title AN OPEN, TRUSTED FOG COMPUTING PLATF
FACILITATING THE DEPLOYMENT, ORCHESTRATION
MANAGEMENT OF SCALABLE, HETEROGENEOUS AND SiI
IOT SERVICES AND CREESOUD APPS

Project Acronym RAINBOW

Grant Agreement

NO 871403
Instrument Research and Innovation action
Call / Topic H2020-ICT-2019-2020 /

Cloud Computing
Start Date of 01/01/2020
Project
Duration of Project 36 months

D5.4 RAINBOW Integrated Platform and
Unified Dashboard - Final Release

Work Package WP5z Continuous Integration and Accessibility

Lead Author (Org) loannis Avramidis, Alex Bensenousi (INTRASOFT)
Contributing Author(s) Alex Vasileiou Konstantinos Theodosiou, Giannis Ledaki
(Org) (UBI); Raphael Schermann (IFAT); Thomas Puszt

(TUW); Moysis Symeonidis (UCY); Heini Bergsson Deb
(DTU); Stefanos Venios (SUITE 5); Casseti Claudio Ettc
(POLITO); Theodoros Toliopoulos (AUTH)

Due Date 31.12.2022
Actual Date of Submission| 30.01.2023
Version V1.0

Dissemination Level

X | PU: Public (*orline platform)

PP: Restricted to other programme participants (including the Commission)
RE: Restricted to a group specified by the consortium (including the Commission)
CO: Confidential, only for members of the consortium (including the Commission)

The work described in this document has been conducted within the project RAINBOW. This project has received

£OT AET ¢ &£O0T i OEA %0Oi PAAT 5T EiIT80 (TOEUIT ¢gmem j(cmgmg OAC
Agreement no 871403. This document doesat represent the opinion of the European Union, and the European

Union is not responsible for any use that might be made of such content.

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW
Versioning and contribution history
Version Date Author Notes
0.1 15.11.2022 loannis Avramidis, Alex Bensenousi Initial ToC
(INTRASOFT)
0.2 25.11.2022 loannis Avramidis, Alex Bensenousi First Draft
(INTRASOFT)
0.3 30.11.2022 | Konstantinos Theodosiou,(UBI); Thomas | Contributed to components
Pusztai (TUW); Demetris TrihinasMoysis | integration status, status,
Symeonidis(UCY); Stefanos Venios and unit testing.
(SUITE 5); Cassettlaudio Ettore
(POLITO); Theodoros Toliopoulos (AUTH);
0.4 10.12.2022 | Alex Vasileioy Giannis Ledakis (UBI); Updating the orchestration
Thomas Pusztai (TUW); part in section 3
05 20.12.2022 loannis Avramidis, Alex Bensenousi Updated version, including
(INTRASOFT) Alex VasileiouUBI) installation instructions
(section 4)
0.6 10.01.2023 | loannis Avramidis, Alex Bensenousi Updated section 6, ready for
(INTRASOFT) review
06.1 20.01.2023 | Demetris Trihinas (UCY) 1st Review
06.2 23.01.2023 | Giannis Ledakis (UBI) 2nd Review
0.9 27.01.2023 | loannis Avramidis, Alex Bensenousi Addressing Reviewers'
(INTRASOFT) comments and Final
version
1.0 30.01.2023 | Christina Stratigaki (UBI) QAreview and Submission
Disclaimer

This document contains material and information that is proprietary and confidential to the RAINBOW Consortiur
and may not be copied, reproduced, or modified in whole or in part for any purpose without the prior written consen
of the RAINBOW Consortium

Despite the material and information contained in this document is considered to be precise and accurate, neither t
Project Coordinator, nor any partner of the RAINBOW Consortium nor any individual acting on behalf of any of t
partners of the RAINBOW Qusortium make any warranty or representation whatsoever, express or implied, with
respect to the use of the material, information, method or process disclosed in this document, including merchantabili
and fitness for a particular purpose or that such usdoes not infringe or interfere with privately owned rights.

In addition, neither the Project Coordinator, nor any partner of the RAINBOW Consortium nor any individual acting g
behalf of any of the partners of the RAINBOW Consortium shall be liable foryadirect, indirect, or consequential loss,
damage, claim or expense arising out of or in connection with any information, material, advice, inaccuracy or omiss

=

he
he

ty

=

contained in this document.

Page2of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

Table of Contents

1. Introduction 9
1.1 Document Purpose and Scope 9
1.2 Relationship with RAINBOW Deliverables 9
1.3 Structure of the de liverable 9

2. RAINBOW Integrated Platform Architecture 10
2.1 Conceptual architecture updates 10
2.2 Technical feedback from the 2nd platform release usage and demonstrators 12

2.2.1 Human Robot Collaboration Demonstrator 12
2.2.2. Digital Transformation of Urban Mobility Demonstrator 12
2.2.3. Power Line Surveillance Demonstrator 13

3 Implementation and Integration Status 15

3.1 Final Release Overview 15
3.1.1 Overall Integration and Component Dependencies 16
3.2 Orchestration Layer Components 16
3.2.1 Logically Centralized Orchestrator 16
3.2.2 Orchestration Lifecycle Manager 21
3.2.3 Pre-deployment Constrint Solver 22
3.2.4 Backend Services 23
3.3 Modeling Layer and Dashboard Components 26
3.3.1 Service Graph Editor & Analytics Editor 26
3.3.2 Policy Editor 28
34 Data Management & Analytics Layer Components 29
3.4.1 Data Storage and Sharing 29
3.4.2 Analytics Service 30
3.5 RAINBOW Edge Stack Components 31
3.5.1 Device Management 31
3.5.2 Control Plane Management Module 31
3.5.3 Secure Mesh Routing protocol stack 32
3.5.4 Multi-domain sidecar proxy 33
3.5.5 Storage Agent & Storage Coordination 34
3.5.6 Analytics Worker & Analytics Coordination 34
3.5.7 Resource & Applicationlevel Monitoring Agent 34
3.5.8 Security Enablers 35

4. RAINBOW Platform Installation 37
4.1. Prerequisites 37
4.2. RAINBOW Platform Setup 37

5. RAINBOW Usage Guide 44

6. Technical Evaluation and Quality Assurance 56
6.1. Continuous Int egration and Quality Assurance 56

6.1.1. Version Control Systerg Gitlab 56
6.1.2 Container Registry 56
Page3of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU
RAINBOW

6.1.3 Issue Tracking Gitlab
6.1.4 Software Quality Evaluation
6.1.5 Continuous Integration Flow

6.2. Testing Procedures of the RAINBOW Final Release
6.3. Unit Testing
6.4. Integration Testing

7. Conclusions

References

Annex |: Unit Tests for Final Release

Page4 of 70

Copyright © RainbowConsortium Partners 2022022

57
58
58

59
59
59
65
66
67

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU
RAINBOW

List of tables

Table 1 Overview of Final Release FunctionalitieS.........c..ovviiiececceceeeeeeeiivieen 1B
Table 2 Public RAINBOW Orchestrator APIS......oooeiiie e B
Table 3 Internal RAINBOW Orchestrator API TYPesS........ccoovvvvviviieeeeeeemeccnnnnnnnneen 20

Table 4 APIs for User & Infrastructure ManagemenLt...........ccoooevvvvicemmmmmmeeeeevineneeeeame 24.
Table 5 APIs for Service Graph, Analytics Interpreter and Policies Interpreter......... 25
Table 6 APIs for Data Storage & Sharing... SRR PPPPPPPPPRRIIDZ4 IO
Table 7 APIs for Analytics Service... PSPPSR |
Table 8 APIs for Mesh Routing Protocol Stack U ¥
Table 9 APIs for Mesh Routing Protocol Stack... PSRN 724

Table 10 APIs foiMesh Routing Protocol Stack32
Table 11 APIs for Mesh Routing Protocol Stack..............ooooiieceemmmmeeeeeeeiiiisscceeeee 33

Table 12 APIs for Monitoring Agent... . S UUPPPUPSRNG 1|
Table 13 APIs for Mesh Routing Protocol Stack PP Lo
Table 14 Analytic Stack master node installation varrables .. 39.
Table 15 Analytic Stack worker node installation variables................c.oooiieceeeeeeeeennnns 41.

List of figures

Figure 1 Roadmap for RAINBOW Development................uvvicceeereeseeeeeeeeevvimmmmmmnnen 10
Figure 2 Roadmap for RAINBOW Development.... . cemmmmmneen D
Figure 3 Logically Centralized Orchestrator Components and Interactrons 17..
Figure 4 Orchestration Lifecycle Manager Components and Interactions................. 21...
Figure 5 Affinity/Anti -affinity rules buttoncccooooiiiiiccome e 2
Figure 6 Create an affinity rule............oooo i eeeeeeees e 2
Figure 7 Analytics EditOr UPAate.............coovvieiiiemmeee e eeememmmme e smmeeeeens 28
Figure 8 Policy EdItOr Update.........cooeiiiiiiiiiiecceeee e eenmmmmme e 28

Figure 9 Monitoring Agent overview... PSP PUPPPPPPPPPRRC. 7 1
Figure 10 Core platform installation scrrpts P UPUOSSSURPPRE 1o §
Figure 11 Analytics Stack master node |nstaIIat|on frles .. 39...
Figure 12 Analytics Scheduler Configuration File... SO {0
Figure 13 Analytics Stack worker node installation files .. 40...
Figure 14 Monitoring configuration file............coooii e eeeeeeem AL
Figure 15 Dashboard installation scrrpts PP 5220

Figure 16 Login page of the RAINBOW Dashboard...44
Figure 17 Main page of the RAINBOW Dashboard.............ccccovimmmcccceeeeiiiiiiiiiiiieeeeen45
Figure 18 Componens' liST..........coeeeeiiiieiiimmmcreeiie e e e e e s ceemmmmmme e e eeeennn e s emmmmmmnnseeeeeee s ADL
Figure 19 Component configuration..............coouveeiimmmmcccreeiiiiiee e e e ceeemnmmme e e eeeeennn e 40

Figure 20 Application creation.. - PP PPPPTRRPPSRD | o
&ECOOA ¢p ! BDI. EAAOELL OB LEAO o AT,
Figure 22 Resource creation.. PP UPPRRRPRTRP” 4
Figure 23 Application Instance creatron PP RUPPTRPPRRTY < IO
Figure 24 Application Instance service graph edrtor SO
Figure 25 Application Instance service graph editor Component edrtrng 49..
Figure 26 Application Instance service graph editor affinity/anti -affinity49..
Page5of 70

Copyright © RainbowConsortium Partners 2022022

~

RAINBOW

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release
Date: 3.01.2023

Dissemination Level:PU

Figure 27 Application Instance service graph editor set affinity rules........................ 50....
Figure 28 Application InStances liSt............ccoovviiiiiceeeeeemr e eceeeeei e eeeee e emmeeaD0
Figure 29 Service graph monitoring part L..........cccoovviiiiiicccccceees e eeeeeeiviimcmmmeeeeenn . 01
Figure 30 Service graph monitoring part PP PPPPPRRPPSPRRRRPRRPPI >
Figure 31Analytics and SLO Editar... PO PUPUN - 172
Figure 32 Creation of a new analytrc: PP UPPPTRRPORY o Y2
Figure 33 Adding expressions on the analytrc PP PP PP P UPUPUPPPTRRTRPPPI o o1
Figure 34 Creation of a new SLQ.. 53
Figure 35 Add metrics in the SL054
Figure 36 Add Computations to the SLQ............coovvviiiccccceecieie e eeeevevvemmmmmcmeeeeee e D4
Figure 37 Add EXpressions to the SLO..........coouiiiiiiceemeere e emmmmeees e DD

&ECOOA

op 21)."/ 780 T EOLAA gO"é ALABSAADI OFC

Figure 39 RAINBOW container images ... 51....
Figure 40 RAINBOW issues... PP UUPPPRRRRIIUPPPTRN ot o 1
Figure 41 RAINBOW's ClI flow P PUUPPPPPPRRRPPI 512 |
Figure 42 Defining request parameters of a REST call .. 60..
Figure 43 Defining assertions based on the expected response of a REST.call....... 61
Figure 44 Overview of integration tests in ReadyAPRl..............oooiiiiirrceeeeeeed 62..
Figure 45 Integration test results (Part 1).........cccoeevuviiiiiccceeeeere e e e eeeeeevvvimmmmcmeree . D300
Figure 46 Integration test results (part 2)64

Page6 of 70

Copyright © RainbowConsortium Partners 2022022

—

RAINBOW

List of acronyms

Acronym
GPS
HTTP
loT

IT

IPR
PCR
RAM
REST
SDK
SLO
TPM
Ul
URL
uT
VCS
WPXx
YAML

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release
Date: 3.01.2023

Dissemination Level:PU

Full name

Global Positioning System
Hypertext Transfer Protocol
Internet of Things

Integration Testing

Intellectual Property Rights
Platform Configuration Register
Random Acces$lemory
Representational state transfer
Software Development Kit
Service Level Objectives
Trusted Platform Module

User Interface

Uniform Resource Locator
Unit Testing

Version control systems

Work Package

YAMLAINn't Markup Language

Page7of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

Executive Summary

This deliverable is a public report presenting the final software release of the RAINBOW
integrated platform. It presents the functionalities provided by the components as part
of the integrated platform and provides the final version of the architecture with
highlights on the interface. In total, 3 distinct releases of the RAINBOW Platform were
planned with 3 corresponding supporting documents. This document constitutes the
version of a live document that was constantly updated to depict the developments of the
RAINBOW platform and, which coincides with the final release of the RAINBOW
integrated platform.

For this final release full integration has been achieved among all platform components,
and minor improvements have been made, thus providing a homogenized user
experience. A complete flow of platform usage is part of the document, along with
updated instructions for the installation of the platform as a whole. Finally, updated
results of the technical evaluation and quality assurance are provided, including
integration testing that has been executed along with the delivery of last release of the
RAINBOW integrated platform.

Page8 of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

1. Introduction

1.1 Document Purpose and Scope

AEEO Al AOIi AT O EAO AO A DpOODPI OA O AARR | PAT U
following chapters describe the final steps taken with regards to the integration of

21). "/ 780 ATl DI 1 Admplée, fdble Aizodal, ahad userfriendly

framework as well as the guidelines for the final prototype installation and utilizatiorto

facilitate its future evolvement, use and exploitation.

1.2 Relationship with RAINBOW Deliverables

Like its previous releases, this deliverable uses RAINBOW's outcomes such as th
reference architecture, integration approach, and overall, the platform evolution as
documented in several deliverables like D1.2, D5.1, 5.2 and 5.3. In the same way, this
document also consolidates the technical developments of the different components
under WP2, WP3 and WP4, and presents the results on the testing and integration
procedures and actual work as reported in the respective first and second release
deliverables. Finally, for this document we alsaitilized feedback resulted from the final
releases of the demo reports i.e., D6.3, D6.5, and D6.7 as input for further fixes and
improvements. That being so, all information provided herein is used as support material
for the final release of the RAINBOW platform.

1.3 Structure of the deliverable

The reg of the deliverable is structured as follows.

72 Section 2 presents updates on the architecture based on the feedback that was
collected from the second release

72 Section 3 provides an overview of the functionalities provided and integration
bl ET 00 | Asfigal rglease/ 7 &

2 3AAQCEIT 1t AAOI AOAOGAO OEA 1T AOGO OAMOETT 1T
guides.

72 Section 5 presents how the RAINBOW platform is used.

72 Section 6 provides the latest results of the technical evaluation

7 Section 7 concludes the document

Page9 of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW
2. RAINBOW Integrated Platform Architecture

2.1 Conceptual architecture updates

The goal of this deliverable is to report on thefine-grained APIs of the finalized
architecture. The architecture per se has not been amended when compared to previous
deliverables since the componentization represents the final codelevel structure.
However, in the frame of this deliverable 18 concrete groups of APIs have been
abstracted to make the presentation of the platform more comprehensiveFigure 1
depicts the final architecture along thecode namesof the reported APIs.The notation
that hasbeenselecied is LayerXGroup¥APL

Service Provider

Modeling Layer

odelling. SGIGMT-API ' v)
8 cloud-native | | | Service Graph [@ e Policy Analytics asseessis §
components Editor Editor Editor =

Developer i
Data Analyst
| Modelling.POLIEYMGNT-AP MOdeling. ANALEDITOR-API
A i A
Service Graph
Tempiate Policy Repository
Repository
)
P
Orchestration Layer Orchestration.BES-API
A A
e,
Operational Backend Services
Dashboards |~ ™ Data Management
o Service Graph Analytics Policy p{ and Analytics Layer
Service Provider Modelling.DASHMGMT-API Jastucil Intepreter Intepreter Intepreter "

Pre-Deployment
Constraint Solver

DulaMarquemef_l ANALYTICS AR I[Anal\(\(S Service

) DataManagemen t.STORAGE-API

Orches3ration.LCO-API
[Orchestration POCS- AP 3

Logically Centralized Orchestration
ent Orchestrator Resource —
Repository Manager i ata Storage and
= [Sharing
J
A

ommgmson.l.cm

Cloud |aa$S Provider

Cloudiaas |.... ;
Resources

rOrcheslrallon Lifecycle Manager

N
Application
Lifecycle Scheduler
Manager [’
Cluster-head Fog Node
Service Discovery and Service Discovery and
Analytics Coordination Storage Coordination

RAINBOW Edge Stack v
Edge.PROXY-API Edge.DEVICEMGMT-AP! Edge ANALYTICS-API Edge.MONITORING-AP|
Edge. STORAGE-API ||

EdOeMESH-APY Edge KUBELET-API Edge. SECURITY-API
| r N
‘ Mesh Routing Mutti-domain | | Control Plane Security | Analytics Storage Monitoring |
|_ [—— |h Protocol Stack | [Sidecar Proxy| | Management | [Management|| Enablers :L Worker Agent Agent |

Fog Device Vendor (

Policy Manager
(Runtime
Contraint Solver)

J
Open Container Initiative (OCI)) | ‘

Figure1 Roadmap for RAINBOW Development

Initially, the Modelling.SGMGMT-API (Service Graph Management API for Editor &
Repository) is responsiblefor exposing all methods that authorservice graphs. This API
includes notonly valid service graphs but alsometadata that are used during initial

Pagel0of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

deployment andruntime reconfiguration. Moreover, theModelling.POLICYMGMT-API
(Policy Editor & Repository API)is responsible for exposing methods that are attaching
(adding/removing) deployment-time and run-time policies.

The Orchestration.BE S-API (Backend Services API)s the ¢hin layerd between the
modelling tools and the logically centralized orchestrator. tl is the cornerstone API
through which instances of service graphs and policies are interpretedn the other
hand, the Orchestration.LCM -API (Orchestration Lifecycle Manager APlexposes the
public state of executable service graphsand manages this statethrough low-level
orchestration commands.Regarding the initial state of a service graph deployment, the
Orchestration.PDCS-API (Pre-Deployment Constraint Solver)is responsible forfinding
the optimal solution for placement;thus, making use of all soft and hard constraints that
AOA APGPDOAOOAA OEOI OCE OEA OAOOAAEAAS DI 1 EAEA
The binding on the runtimeorchedration elements with the K8S runtime is provided by
the Orchestration.LCO -API (Logically Centralized Orchestration APL) The project took
the decision to conceptually comply withKubernetes K89 i.e.,to use the extensibility
mechanismsfor job scheduling, placementand management.These lowlevel bindings
are exposed bythe LCOAPI. The highlevel interaction of a DevOPs user with the
Orchestrator is performed throughthe Modelling.DASHMGMT-API (Dashboard API)
"AUTTA OEA OITCEAATT U AAT ODAI BEBAA HAODAKAR!
addressed asRAINBOW Edge Stack. The submodules that compriges bundle are 8,
which include:

1 Edge.DEVICEMGMTAPI (Device Management APIl)for capabilities exposure
(sensors, actuators, TPMs)

1 Edge.MESHAPI (Mesh Routing Protocol Stack APHor materialized the overlay
onboarding

1 Edge.KUBELETAPI (Control Plane Management Module APljor materializing
the joining to the logical centralized k8s cluster

1 Edge.PRXY-API (Multi-domain Sidecar Proxy APIljor configuring envoyservice
HTTP/GRPC proxies

1 Edge.SECURITYAPI (Security Enablers/Attestation API) for performing
integrity verification tests

1 Edge.MONITORINGAPI (Resource and Application Monitoring Agent API¥or
low level monitoring stream extraction

1 Edge.STORAGEAPI (Storage Agent APl)that support analytic pipeline edge
storage requirements

1 Edge.ANALYTICSAPI (Analytics Workers API) that support analytic pipeline
edge execution requirements

Finally, a set of complementary APIs are exposed in order to perfornalytics tasks.
These includes the Modelling. ANALEDITOR-API (Analytics Editor API) for authoring
pipelines and DataManagement. STORAGEAPI (Data Storage and Sharing APland
DataManagement. ANALYTICSAPI (Analytics Service API)for storage and execution
respectively.

All the aforementioned APIs are thoroughly discussed in the frame of the current
deliverable.

Pagellof 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

2.2 Technical feedback from the 2nd platform release usage and

demonstrators

Towards improving the final release of the rainbow platform, we took advantage of the
feedback gained from the use case demonstrators while installing, configure and using
second release'slifferent functions in a physical demo set up. The value of these tests was
that they allowed us to get our hand on the behaviour of the system in real conditions.
-1 OA OPAAEZEAAI T Uh OEA ET OACOAOEITT OAAI
deployment and usage against the 1st release, and evaluate the monitoring, configuration
of service level objectives and metrics, as well as the usage of different platform
components. Overall, the deployment and use of the 2nd release of RAINBOW platform
presentedno significant issues, while the platform was found to be more usdriendly and
feature-rich by the demo partners. On the other hand, as a result of this testing activity,
RAINBOW's technical partners also received bug reports as well as points where the
platform's behaviour is open to further improvements as can be found bellow.

2.2.1 Human Robot Collaboration Demonstrator
In this pilot, a humanrobot collaboration system was tested with multiple applications

such as robot motion tracking, personnel localization and collision prediction, requiring
these applications to have (i) scalability, (i) easy management, (i) analts, and (iv)

EA/

10A1 EOU 1T &£ 3AOOEAA8 21)."/1 780 1T OAEAOOOAOQEIT I

functionalities were used to accomplish these goals. After the running of this
demonstrator the following bugsfixing/feature request were suggested
Deployment recommendations

7 All the remnants of any previous RAINBOW installation were removed before

starting the installation of the 2nd release
o [feature request for easier upgradesas part of a commercial slution].
72 A more dynamic management (throughhe dashboard Ul) of the SLO policies
and analytics will be considered an Ul enhancement
o [feature request, taken into account for theimprovements in final version
of SLO Ul

Configuration of Service Level Objective and Metrics
7 Adding SLOs in this use case requires other metrics such as network and

custom metrics such as the queue properties of the used RabbitMQ queues
0 [Feature request taken into account and network metrics lve been
provided as part of the final release of RAINBOW

2.2.2. Digital Transformation of Urban Mobility Demonstrator

In this case, the goal was to demonstrate how RAINBOW can contribute to fulfil a real
time georeferenced notification system about a hzardous situation for vehicles
travelling in urban areas while also acting in the vehicle communication field. This is a
scenario where the optimum balancing between MEC and Fog Node in terms of energy

Pagel20f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

consumption, bandwidth occupancy, accuracy and lategcds required, while a secure

data collection and distribution of messages to enable a scalable bidirectional

AT T 1 O61T EAAOCETT EO ANOAI T U EIi PI OOAT 08 21). "/ 78
enrolment, privacy preserving exchange of messages were usemlachieve these goals.

After the running of this demonstrator the following bugsfixing/feature request were

suggested:

Deployment recommendations
72 On the deployment of the 2d release, Nvidia Xavier was used without a reset

of the machine to avoid the krnel setup that was a complex procedure already

for the 1strelease.

0 [Nonissug but a limitation in the current version of the OS of the Nvidia
Jetson/Xavier device We expect better support on newer OS versioi}s.

2.2.3. Power Line Surveillance Demonstrator

The role of the physical demonstrator was to simulate real conditions during inspection
missions along power lines by implementing a distributed GCS that will govern a swarm
of drones to optimize their operations andi AOAAOA OEA OxAQOi 80 OAT1T CA
eliminating the execution of failsafe procedures due to interference or interruptions in
OEA OAAEIT 1 ETE8 2!)."/ 780 O~Adeviaverdk cogtankDE AT A
solver, analytics service, and mesh routg protocol stack were employed to address
these challenges. After the running of this demonstrator the following bugsing/feature
request were suggested:
Deployment recommendations
72 Since the worker nodes were based on the Jetson TX2 computers, aniaddal

preparatory step was required. The Linux kernel had to be recompiled to

ensure that options required by the mesh networking stack are enabled. This

was a bit challenging since the Jetson modules were mounted on carrier

boards that required non-standard kernels

0 [Non issue, but a limitation in the current version of the OS of the Nvidia
Jetson/Xavierdevice. We expect better support on newer OS versiois.

72 It is advisable to develop a tool that will allow users to assess the state of the
RAINBOW cluster so that they can check whether the installation has
succeeded and whether all components are working as expected with just a
single command to save a considerable amount of time
o [Feature request Currently users have to check various compent for the

status, feature should be part ofany commercial solution based on
RAINBOW].

72 Verification of the analytic stack required lots of effort and a bit of
experimentation
0 [Feature request. Alreadyincluded Ul parts along the installation of the

analytics stack for the finalrelease, moreimprovements could bepart of
any commercial solution based orthe analytic stacK.

Pagel3of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

Configuration of Service Level Objective and Metrics

72 Extending the dashboard should be done after the project becomes more
widely adopted and it will be possible to determine what SLO definitions are
most frequently used
0 [Feature request A interesting idea for improving the user experience,

feature could be part of any commercial solution based oRAINBOW)]

Pagel4of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

3 Implementation an d Integration Status

In this section, we describe the status of the overall RAINBOW platform for the final
release. To be in this position, we followed the development and integration plan
presented in D5.1 and thdeedback receivedrom the physical set up demogo provide a
platform that can be characterized as stableRAINBOW folloved a standard approach to
implement the RAINBOW framework mechanismsby adopting from early on a
continuous process that contaired a setof discrete steps that e-assurdl its high quality.

In specific, the following integration time plan is followed:

First release of First release of Second release of Final release of

WP2-WP4 integrated WP2-WP4 integrated platform, with

components platform components and the improvements based on
integrated platform demonstrators’ feedback

Figure 2 Roadmap for RAINBOW Development

In the following subsections we provide the status for the platform as whole (section 3.1),
and then we proceed to more detailed description of the improvements and updates done
per component. To facilitate the reading process, we separate the various components
per layer; in section 3.2 we present the current state of implementation and integration
of Orchestration layer, in 3.3 we present the components of the Modelling Layer, in
section 3.4 the components of Data Management and Analytics Layer and in section 3.5
we present the edge stack.

3.1 Final Release Overview

Tablel Overviewof Final Release Functionalities

Tool - Service Participants API Specification Codename
Orchestration Layer
Orchestration Lifecycle TUW-UBI- Orchestration.L.CMAPI

Manager UCY- AUTH

Pre-Deployment TUW-UBI- OrchestrationPDCSAPI

Constraint Solver ucy

Logically Centralized TUW Orchestration.LCGAPI

Orchestration

Backend Services UBIZ Orchestration BES-API
SUITES

Modeling Layer and Dashboard
Service Graph Editor & SUITE5- UBI Modelling. SGMGMAPI

Repository - TUW

Analytics Editor SUITE5-UBI Modelling. ANALEDITORAPI
-UCY- AUTH

Policy Editor & SUITE5-UBI Modelling.POLICYMGMRPI

Repository -UCY-TUW

Pagel50f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

—

RAINBOW

Dashboard SUITES-UBI
Data Management & Analytics Layer
Data Storage ancdbharing AUTH- UCY-

K3Y- SUITE5
Analytics Service UCY- SUITES
-TUW- AUTH
- UNIS
Edge Stack
Mesh Routing Protocol UBI - IFAT -
Stack DTU- POLITO
Multi-domain Sidecar UBI- UCY-
Proxy INTRA
Security Enablers POLITO-
IFAT-DTU
UBI- K3Y
Storage Agent AUTH- UCY-
K3Y- SUITE5

Resource and Application UCY- TUW-

Date: 3.01.2023
Dissemination Level:PU

Modelling.DASHMGMAAPI
DataManagement.STORAGAPI

DataManagement.ANALYTICAPI

Edge.MESHAPI
Edge.PROXMAPI

Edge.SECURITXPI

Edge.STORAGEPI

EdgeMONITORINGAPI

Monitoring Agent UNIS- K3Y -

AUTH
Analytics Workers ucy EdgeANALYTICSAPI
Device Management uBlI EdgeDEVICBMGMT-API
Control Plane uUBlI Edge.KUBELETAPI

Management Module

3.1.1 Overall Integration and Component Dependencies

The integration status of high-level interfaces between the different RAINBOW
components was reported in previous deliverables. For the final release since all
dependencies have been resolved in previous versions, some final adjustments on APIs
are reported below.

3.2 Orchestration La yer Components

As its name suggests, the orchestration Layer includes all components responsible for the
deployment and orchestration of the applications using RAINBOW. The overall
architecture of this layer remains the same as for the second release GAIRBOW.

3.2.1 Logically Centralized Orchestrator

The RAINBOW Logically Centralized Orchestrator is responsible for managing the
deployment and resources of RAINBOW applications, as well as storing metadata about
them. It receives service graphs that have been plyed by the Backend Services and
provides status information about them.

The RAINBOW Logically Centralized Orchestrator consists of the three loosely coupled
components highlighted in Figure 1, i.e., the Resource Manager, the Deployment Manager,
and the Orchestrator Repository.

Pagel60f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

. [
T / Orchestrator

- I Repository
s D.ieplgv h Create Create
ervice Grap Native Deployments Service Instances
n l Native Deployments
DePonment Schedule Service Instances
(Manager on Nodes

Application Lifecycle Managers

i B
Scheduler ~ Node

Resource— | Resource ‘ Update

Info Manager Native
Deployments

Deploy
and
Configure

SLO Managers
Monitoring APl ——Metrics—» i)

E—

Figure 3 Logically Centralized Orchestrator Components and Interactions

Resource/Container Manager

Based on the stateof-the-art analysis and requirements elicitation performed in WP1,
the RAINBOW platorm uses Kubernetes as its Resource Manager. Specifically, this
release of RAINBOW is built on top of the vanilla Kubernetes distribution v1.21

RAINBOW relies on a fixed schema for handling fog specific resources, such as GPS
sensors or cameras, usinghe extended resources and labels mechanisms provided by
Kubernetes. Nonsharable resources that need to be exclusively assigned to a container,
e.g., a video camera, are represented as extended resources, which allow managing
guantities. Conversely, sharale resources, which may be used by multiple containers
simultaneously, e.g., a GPS sensor, are represented using labels on nodes.

Deployment Manager

The Deployment Manager is implemented as a Kubernetes controller responsible for
service graphs. It alsrovides the Kubernetes Custom Resource Definition (CRD) [4] for
service graph objects. It is written in Go [5] and relies on scaffolding and the controller
framework provided by kubebuilder [6]. Upon submission of a service graph, the
Deployment Manager oeates and/or updates Kubernetesnative deployments and
RAINBOW Service Level Objective (SLO) configurations. Additionally, it provides status
information about the deployments to the Ul through the status subresource of each
service graph.

Pagel7of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

This component relies on the Service Graph Editor as Ul and the Backend Services as the
middleware responsible for all the transformation and the communication services and
Kubernetes as the Resource Manager.

The Deployment Manager is able to configure all aspts of an SLO and its elasticity
strategy and adds the ability to provide applicationspecific configuration properties
through the service graph, which are implemented as Kubernetes ConfigMaps

Orchestrator Repository

The Orchestrator Repository is divided between a MySQL database, which stores
information about the deployment lifecycle and orchestration process, and an etcd key
value store, which houses all information relevant for Kubernetes.

APIs and Integration Stafis

All components of the RAINBOW Logically Centralized Orchestrator depend on the
underlying Kubernetes distribution (vanilla Kubernetes v1.21 for this release of the
RAINBOW platform). Kubernetes must be set up and configured with the RAINBOW Mesh
networking components. Afterwards, the orchestrator components can be deployed and

take their responsibility of creating, modifying, and deleting Kubernetesiative and
RAINBOWODAAE £ZEA OAOI OOAAOh AAOAA 11 AbPDPI EAAOEI
In Table 2 we present all interfaces exposed by the component, along with their

descriptions.
Table2 Public RAINBOW Orchestrator APIs

Method Path Description Used By
GET /apis/vl/namespac Returns a list of all namespaces User and
es registered in the orchestrator Infrastructure
Manager,
Service Graph
Interpreter
GET /apis/vl/namespac Returns the namespace object User and
es/<name> with the specified name Infrastructure
Manager,
Service Grph
Interpreter
POST /apis/vl/namespac Creates a new namespace object User and
es Infrastructure
Manager,
Service Graph
Interpreter
PUT /apis/vl/namespac Replaces the namespace object User and
es/<name> with the specified name. To be Infrastructure

successful, the resourceVersion Manager,
number in the body must match Service Graph
the current version of the object. Interpreter

Pagel8of 70

Copyright © RainbowConsortium Partners 2022022

~

RAINBOW

Method
DELETE

GET

GET

POST

PUT

DELETE

GET

GET

POST

Path

/apis/vl/namespac
es/<name>

/apis/fogapps.k8s.r
ainbow-h2020.eu
/vl/namespaces/<
namespace>/servic
egraphs
/apis/fogapps.k8s.r
ainbow-h2020.eu
/vl/namespaces/<
namespace>/servic
egraphs/<name>
/apis/fogapps.k8s.r
ainbow-h2020.eu
/vl/namespaces/<
namespace>/servic
egraphs
/apis/fogapps.k8s.r
ainbow-h2020.eu
/vl/namespaces/<
namespace>/servic
egraphs/<name>

/apis/fogapps.k8s.r
ainbow-h2020.eu
/vl/namespaces/<
namespace>/servic
egraphs/<name>
/apis/cluster.k8s.ra
inbow-
h2020.eu/vl/name
spaces/default/net
worklinks
/apis/cluster.k8s.ra
inbow-
h2020.eu/vl/name
spaces/default/net
worklinks/<name>
/apis/cluster.k8s.ra
inbow-
h2020.eu/vl/name
spaces/default/net

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release
Date: 3.01.2023

Dissemination Level:PU

Description Used By
Deletes the namespace with the User and
specified name Infrastructure
Manager,
Service Graph
Interpreter
Returns a list of all Service User and
Graphs in the specified Infrastructure
namespace Manager,
Service Graph
Interpreter

Returns the Service Graph object User and
(which includes its deployment Infrastructure

status) with the specified Manager,
namespace and name Service Graph
Interpreter
Creates a new Service Graph User and
object in the specified Infrastructure
namespace Manager,
Service Graph
Interpreter

Replaces the Service Graph objec User and
with the specified namespace and Infrastructure

name. To be successfuthe Manager,
resourceVersion number inthe Service Graph
body must match the current Interpreter

version of the object.
Deletes the Service Graph with User and

the specified namespace and Infrastructure

name. Manager,
Service Graph
Interpreter

Returns a list of all Network Link User and
objects that are pat of the cluster Infrastructure

topology graph. Manager,
Service Graph
Interpreter

Returns the Network Link object User and

with the specified name Infrastructur e
Manager,
Service Graph
Interpreter

Creates a new Network Link User and

object in the cluster topology Infrastructure

graph Manager,

Service Graph

Pagel190f 70

Copyright © RainbowConsortium Partners 2022022

~

RAINBOW
Method Path

worklinks
PUT /apis/cluster.k8s.ra

inbow-
h2020.eu/vl/name
spaces/default/net
worklinks/<name>
DELETE /apis/cluster.k8s.ra
inbow-
h2020.eu/vl/name
spaces/default/net
worklinks/<name>

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

Description

Replaces the Network Link object
with the specified name in the
cluster topology graph. To be
successful, the resurceVersion
number in the body must match
the current version of the object.
Deletes the Network Link with
the specified name from the
cluster topology graph

Used By

Interpreter

User and
Infrastructure
Manager,
Service Graph
Interpreter

User and
Infrastructure
Manager,
Service Graph
Interpreter

To get a specific API path, the placeholders <GROUP> and <TYPE> need to be replaced
with the group and type name values from the list of API tygs inTable 2

Table3 Internal RAINBOW Orchestrator API Types

Object Type Group Type Name Used By
Custom Stream slo.k8s.rainbow customstreams Deployment Manager, SLO
Sight SLO -h2020.eu ightslomapping Policy Managers
Mapping S
Network QoS slo.k8s.rainbow networkgoslom Deployment Manager, SLO
SLO Mapping -h2020.eu appings Policy Managers
Migration elasticity.k8s.ra migrationelasti SLO Policy Managers,
Elasticity inbow- citystrategies Application Lifecycle
Strategy h2020.eu Managers

OPC UA Messagt

elasticity.k8s.ra

Elasticity inbow-
Strategy h2020.eu
Horizontal elasticity.polari
Elasticity s-slo-

Strategy cloud.github.io
Vertical elasticity.polari
Elasticity s-slo-

Strategy cloud.github.io
Kubernetes apps
Deployment

Kubernetes apps
StatefulSet

Kubernetes core
ConfigMap

opcuamessagee

lasticitystrateqi
es
horizontalelasti
citystrategies

verticalelasticit
ystrategies

deployments
statefulsets

configmaps

Page20of 70

SLO Policy Managers,
Application Lifecycle
Managers

SLO Policy Managers,
Application Lifecycle
Managers

SLO Policy Managers,
Application Lifecycle
Managers

Deployment Manager,
Scheduler, Kubernetes
Deployment Manager,
Scheduler, Kubernetes
Deployment Manager,
Deployed Services, Kuberetes

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW
Object Type Group Type Name Used By
Kubernetes core services Deployment Manager,

Service Kubernetes
Kubernetes networking.k8s ingresses Deployment Manager,
Ingress Config .o Kubernetes

3.2.2 Orchestration Lifecycle Manager

The Orchestration Lifecycle Manager is part of th@rchestration layer and consists of the
three loosely coupled components highlighted in Figure 2, i.e., the Scheduler, the SLO
Policy Managers and the Application Lifecycle Managers.

F Orchesrator

- Repository
s D‘ep\gv h Create Create
ervice Grap Native Deployments Service Instances
Native Deployments
DEplovment Schedule Service Instances
Manager on Nodes “

Application Lifecycle Managers

Scheduler |~ MNode

Resource— | Resource Update
Info Manager Native
Deploy Deployments
and n
Configure

SLO Managers

E—

Monitoring APl ——Metrics—»

Figure4 Orchestration Lifecycle Manager Components and Interactions

Scheduler

The Scheduler assigns each service instance to a node for execution, according to its
requirements and constraints. It is implemented in Go and built on top of thikubernetes
Scheduling Framework.

The RAINBOW Scheduler plugins enable fog awareness by respecting network Quality of
Service (QoS) constraints/network SLOs and fog optimized resource distribution.

SLO Policy Managers
The SLO Policy Managers monitor th8LO compliance of deployed services and trigger

elasticity strategies upon violations. They are implemented as Kubernetes controllers in
TypeScript using the Polaris framework.

Page210f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

The RAINBOW platform features a generic SLO controller that can be used toldui
custom SLOs, based on multiple metrics, from the Ul.

Application Lifecycle Managers

The Application Lifecycle Managers are responsible for managing the service instances
and for executing the elasticity strategies. Service instances management is pidad
natively by Kubernetes. The elasticity strategies are implemented in TypeScript using the
Polaris framework.

The RAINBOW platform features a horizontal elasticity strategy, a vertical elasticity
strategy, a migration elasticity strategy to move serges from one node to another, and
an elasticity strategy to send messages to I0T devices via OPC UA.

APIs and Integration Status

All components of the RAINBOW Orchestration Lifecycle Manager depend on the
underlying Kubernetes distribution (vanilla Kubernetes v1.21), the CRDs provided by the
components of the RAINBOW Logically Centralized Orchestrator, and its APIs. The
Orchestration Lifecycle Manager does not provide an API on its own.

3.2.3 Pre-deployment Constraint Solver

The Predeployment Constraint Solve has two major responsibilities: i) validation of a
submitted service graph against the corresponding CRD schema, which is handled
natively by Kubernetes, and ii) semantic validation of the service graph, e.g., ensuring that
it does not contain any loopwhich is performed by a custom Admission Webhook [11].

Originally, the Predeployment Constraint Solver was planned to be implemented with
OptaPlanner [12], but this decision was changed at the second release of the RAINBOW
platform, leading to the implenmentation of the lightweight validation mechanisms
describe above. Since the Scheduler is the component that is responsible for finding a
placement for each service that satisfies its constraints, it solves the constraints
satisfaction problem in an onlinefashion. The design of the RAINBOW Scheduler ensures,
upon the initial deployment or an application, that either all its services are scheduled or
none at all. Thus, a duplication of this constraint solving logic from the scheduler in the
Pre-deployment Cmstraint Solver would have provided little additional benefit, while
requiring additional processing time for each service graph.

APls and Integration Status

The Predeployment Constraint Solver depends on the underlying Kubernetes
distribution (vanilla Kubernetes v1.21) and the CRDs provided by the components of the
RAINBOW Logically Centralized Orchestrator. The RPdeployment Constraint Solver
does not provide a public API but is triggered by the Logically Centralized Orchestrator

Page22of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW
3.2.4 Backend Services

The Backend Services of the RAINBOW Orchestration layer acts as the link between the
Modelling Layer, the Data Management and Analytics Layer and the Logically Centralized
Orchestration and are responsible for all thaunderlying communication between those

I AUAOO8 +EA OOOOAOOOAI Al AT AT OO 1T &£ OEA " AAE/
Manager, the Service Graph Interpreter, the Analytics Interpreter and the Policy
Interpreter. The User and Infrastructure Managemare finalised during the latest release

of RAINBOW and no further updates are implemented. On the other hand, and based on

the users feedback, the Service Graph Interpreter, the Analytics Interpreter and the Policy

Interpreter receive some new features ad updates.
User and Infrastructure Manager

The User and Infrastructure Manager undertakes two main tasks, the user management
and the infrastructure management. The user management includes all the operations for
users and organizations, such as the regration, authentication, authorization etc. The
infrastructure management is responsible for the registration, authentication and
authorization of the cloud/fog provider.

Service Graph Interpreter

The Service Graph Interpreter is responsible for the terpretation of an abstract service
graph that comes from the Modeling Layer and the delivery to the Logically Centralized
Orchestration. Also, it receives and manages all the status updates from the Logically
Centralized Orchestration and updates accordgly the Modeling Layer. At the final
integration of the RAINBOWblatform, we further enhance the service graph in order to
support affinity and anti-affinity rules for the components placement. This feature allows
constraining components placement on thelaster nodes against other components of
the same service graph.

Analytics Interpreter

The Analytics Interpreter receives an analytics query from the Analytics Editor
component of the Modeling layer, interprets it to the query language that is used byeh
Data Management and Analytics Layer and forwards the query to that layer. Then
receives back the results from the applied query and interprets them for consumption by
the Modeling Layer. During the final integration we implement a separation on the metri
type that is used in the analytics query between the component specific metrics (i.e cpu
utilisation, ram usage etc) and user custom metrics (i.e frames per second etc) in order
to provide a better user experience. This update does not affect the corenfttionality of
the AnalyticsiInterpreter, but it requires the update of the interpretation procedure of the
received query into the query language that is used by the Data Management and
Analytics Layer.

Policy Interpreter

Page230f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release
Date: 3.01.2023

Dissemination Level:PU

~

RAINBOW

The Policy Interpreter is respd OEAT A &£ O OEA ET OAOPOAOAOEI 1
Level Objective (SLO) configuration from the Policy Repository component of the
Modeling layer into the service graph that will be sent to the Logically Centralized
Orchestration. The SLOs are part dhe service graph object and when a SLO received
from the Policy Interpreter, it interprets it, updates the corresponding service graph
object and sends the updated service graph to the Logically Centralized Orchestration.
During the final integration of the RAINBOWplatform, we implement a separation
between the component specific metrics (i.e cpu utilisation, ram usage etc) that is used
by the SLO and the user custom metrics (i.e frames per second etc), similar to the
analytics interpreter update, that isused by the SLO. As in the Analytics Interpreter case,
the core functionality of the Policy Interpreter remains unaffected, but an update is
required in the way that an incoming SLOs will be interpreted by the Policy Interpreter.

APIs and Integration Sta tus

In the table below we present the most important interfaces provided by the Backend
Services Component.

Table4 APIs for User & Infrastructure Management

Method Path Description Used By
PUT lapilvl/user 5DAAOAO OOA Operational
information Dashboards
POST /api/lvl/user Creates a new user Operational
Dashboards
GET lapi/vl/user/{id} 2A00EAOAO O Operational
information by Id Dashboards
DELETE /api/vl/user/{id} Deletes a user by Id Operational
Dashboards
POST /api/vl/user/list Retrieves all users Operational
Dashboards
GET /api/vl/providertype/{id} Retrieves the cloud/fog Operational
provider type Dashboards
POST /apilvl/providertypel/list Retrieves all the Operational
available Dashboards
provider types
PUT lapi/vl/provider 5pAAOAO DOI Operational
information Dashboards
POST /api/vl/provider Creates a new provider Operational
Dashboards
GET /apilv1/provider/{id} 2A00EAOAO b Operational
information by Id Dashboards
DELETE /api/vl/provider/{id} Deletes a provider by Id Operational
Dashboards
GET /apilvl/auth/user Retrieves the Operational
authenticated Dashboards
user
Page24 of 70

Copyright © RainbowConsortium Partners 2022022

~

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

RAINBOW
Method Path
POST /api /vl/auth/logout

Method
PUT

POST

GET

DELETE

POST

POST

DELETE

GET

PUT

POST

GET

DELETE

POST

POST

POST

GET

DELETE

Date: 3.01.2023
Dissemination Level:PU

Description

Used By

%l A OOAOB6 O Operational

Logout the user

Dashboards

Table5 APIs for Service Graph, Analytics Interpreter and Policies Interpreter

Path
/api/vl/component

/api/vl/component
/api/vl/component/{id}
/api/vl/component/{id}
/api/vl/component/list
/apilvl/component/affinities

/apilvl/component/affinities/
{id}
/api/vl/component/affinities/
{application_instance_id}

/apilvl/application
/api /v1/application
/apilvl/application/{id}
/apilvl/application/{id}

/apilvl/applicationinstance/{a
pplicationinstancelD}/request/
undeployment
/apilvl/applicationinstance/{a
pplicationinstancelD}/request/
deployment
/apilvl/applicationinstance/{a
pplicationinstancelD}/request/
cancellation
/apilvl/metric/{id}/applicatio
ninstance/{applicationinstancel
d}

/apilvl/metric/delete/{id}

Description

Updates acomponent
Creates a component

Fetches a component by

id

Deletes a component by

id

Fetches a list of

components

Creates component

affinity rules

Delete a component
affinity rules by id
Fetches a component
affinity rules by a
specific application id
Updates a Service graph

Creates a Service graph

Fetches a Service graph

by id

Deletes a Service graph

by id

Undeploys a Service

Graph instance

Deploys a Service Grapt

instance

Cancel the deployment
of a Service Graph

instance

Retrieves the analytics
query results for a

specific

query and application

instance

Deletes an analytics

Page250f 70

Copyright © RainbowConsortium Partners 2022022

Used By
Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Analytics
Editor

Analytics

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW
Method Path Description Used By
query Editor
by Id
POST /apilvl/metric/create/{applica Createnew analytics Analytics
tionlnstanceld} query for a specific Editor

application instance
POST /api/vl/metric/applicationinst Retrieves all analytics Analytics
ance/{applicationinstanceld}/li queries for a specific Editor

st application
instance id
GET /api/vl/metric/applicationinst Retrieves all the Analytics
ance/{applicationinstanceld}/c available Editor
omponentnode/{componentNo metrics for a specific
deHexID}/metrics application instance and
a

specific component
POST /api Ivl/elasticity/create/{appl Create a new elasticity Policy Editor

icationlnstanceld} policy for a specific
application instance

GET /apilvl/elasticity/applicationi Retrieves a specific Policy Editor
nstance/{applicationinstanceld elasticity policy for a
}slo/{slold} specific application

PUT /apilvl/elasticity/applicationi Updates a specific Policy Editor
nstance/{applicationinstanceld elasticity policy for a
}slo/{slold} specific application

DELETE /api/vl/elasticity/applicationi Deletes a specific Policy Editor
nstance/{applicationinstanceld elasticity policy for a
}slo/{slold} specific application

POST /api/v1/elasticity/applicationi Fetches a list of Policy Editor
nstance/{applicationinstanceld elasticity policies for a
Hlist specific application

More details about this API are provided in the GitLab repository of RAINBOW using
the OpenAPIstandard.

3.3 Modeling Layer and Dashboard Components
3.3.1 Service Graph Editor & Analytics Editor

The Service Graph Editor & Analytics Editor are implemented as part of the Ul and belong
01 OEA I1TTAAITETC 1 AUAO 1T &# OEA 21)."178660
Analytics Editor is composed of two main parts, the first part (Service Graph Editor i
responsible for the authoring and maintaining of the application templates of cloud
native components along with the maintenance of the deployment operation. The second
part (Analytics Editor) is responsible for the monitoring of the deployed clouéhative
components. During the previous releases dRAINBOW,the core functionality of this

Page26 of 70

Copyright © RainbowConsortium Partners 2022022

AOA

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

component has been finalised and fully integrated with the rest of the RAINBOW
components, but during this final integration of the RAINBOW platform, based also on

our use-cases feedback, we added some new features and updates.

At the Service GraptEditor, we added a new feature where the users can create affinity

and anti-affinity rules. This feature, as depicted in Figurd and Figure5 below, enables

the placement of the service graph component in cluster nodes against other components

I £/ OEA OAOOEAA COADPE AAcfidtyrilds. OEA OOAO0G O AZEA

newApplnstance

Select Provides

Rainbow Kubernetes

Enable End-To-End Encrypted IPv6 Comm

d IPv6 Communication
Enable Soc on each component Node Instance

WordPress64

&

Po

MariaDB31
»

&,

phpMyAdmin53

&
&

Figure5 Affinity/Anti -affinity rules button

Set the Pod Affinity

Figure 6 Create araffinity rule

At the Analytics Editor we updated the editor to create a separation on the metric type
that is used in the analytics query between the component specific metrics.€., CPU
utilisation, ram usage etc) and user custom metricg.€.,frames per second etc) in order
to provide a better user experience. The core functionality remains as was in the previous
release, the only change is a radio button in the editor as shown in Figure

Page270f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU
RAINBOW

VRAINBOW

» Analytics > Cr
Analytics | Create

Figure 7 Analytics Editor update

3.3.2 Policy Editor

The Policy editor is a component of theModelling layer that is responsible to apply
instructions/guidelines regarding how the overall application should behave prior to
deployment and during runtime. These instuctions are addressed as SLOs and when
created by the user, are sent to the Policy Interpreter for the interpretation and further
processing of the RAINBOW platform. The Policy Editor was finalised and fully integrated
during the previous release, as faas concerns the final integration the core functionality
remains as was and only a minor update took place on the editor. That update concerns
the separation of the metrics that are used in the SLOs in component specific metrics.,
CPuutilisation, ram usage etc) and user custom metrics (i.drames per second etc). The
new functionality is highlighted in the Figure7 below.

A RAINBOW

Figure 8 Policy Editor update

APIs and Integration Status

Page28of 70

Copyright © RainbowConsortium Partners 2022022

~

RAINBOW

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release
Date: 3.01.2023

Dissemination Level:PU

This component depends on the Data Storage and Sharing component to fetch the

AADPTI T UI ATO68O Agbi OAA

A N 2 9~ Z s oA

i AOOEAO AT A OEA |1 CEAA

deployments and save the policies, which are then sent to the appropriate RAINBOW
component.

3.4

Data Management & Analytics Layer Components

3.4.1 Data Storage and Sharing

The Data Storage and Sharing component of the Data Management & Analytics Layer is
the main storage unit for the monitoring metrics and any other metadata needed by the
RAINBOWcomponents, transparent to the enduser. The component includes two main
services for data exchange and are specifically the extraction and ingestion services.
Both are available with different variations behind a REST API that is stable since the

previous platform release.

The Data Storage and Sharing component also includes a data placement service that
replaces the default data replication algorithms of the underline distributed database
framework, i.e, Apache Ignite. The data placement algorithm workin the backgroundto
replicate data from one storage instance to another in order to reduce extraction latency
and data availability. For the final release of the RAINBOW platform, the data placement
algorithm has been finalized and evaluated in a realiorld scenario.

Method
POST

POST

POST

POST

POST

DELETE

POST
POST

DELETE

POST

Path
/nodes

/put

/get

/query

Nlist
/monitoring

/analytics/put
/analytics/get

/analytics

lapp/put

Table6 APIsfor Data Storage & Sharing

Description Used By
Returns the list of active Analytics Service
storage instances with their
hostnames and their type of
instance.

Ingestion of monitoring data. Resource & Application
level Monitoring Agent
Returns monitoring data with Analytics Service, Policy
their values. Editor, Backend Services
Returns an aggregated value Analytics Service, Policy
from the monitoring data. Editor, Backend Services
Returns a list of the monitoring Analytics Service
metadata.
Deletes the specified Resource & Application
monitoring data. level Monitoring Agent
Ingestion of analytics data. Analytics Service
Returns analytics data with Analytics Service, Policy
their values. Editor, Backend Services
Deletes the specified analytics Analytics Service

data.

Ingestion of timestamped data Analytics Service
(main-memory).

Page29of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

Method Path Description Used By

POST /app/get Returns timestamped data Analytics Service, Policy
with their values. Editor, Backend Services

DELETE /app Deletes the specified Analytics Service

timestamped data.

3.4.2 Analytics Service

The RAINBOW Analytics Service is a part of the Data Management & Analytics layer that
helps with data processing for the RAINBOW ecosystem. It allows for reahe analysis

of a large amount of data collected from the underlying fog resoces and performance
indicators from IoT applications. The service is designed to be distributed, meaning that
data processing happens where the data is generated, so that analysis can be done quickly
with low latency and without the data leaving the netvork of collaborating fog nodes. It

is built on Apache Storm and includes scheduling algorithms that optimize streaming
analytic queries and take into account unique factors such as energy consumption,
latency, and data quality in the many locations whereolT applications are deployed.

The RAINBOW Analytics Service has three core components, namely the Analytics
Enabler, the declarative analytic queries, and the Analytics Workers. The Analytics
Enabler is the Orchestration Service that manipulates the distbuted processing
environment and orchestrates the execution of the analytic tasks. The latter service
materialized by the Apache Storm, but we also extended it with novel Famabled
scheduling algorithms. The Analytic Stack accepts declarative queries iten in
StreamSight [cite] language, and StreamSight translates these queries into executables
and deploys them on the underlying execution engine (Apache Storm). Finally, the
Analytics Workers perform the analytic duties of the submitted jobs and are dépyed on

the fog nodes that the user has allocated for the deployment.

The interactions and coordination actions between the Analytic Workers and the
Analytics Enabler are handled by the Apache Storm cluster. The other components of the
RAINBOWcommunicate with the Analytics Enabler by performing HTTP rest API calls.
Specifically, we provided a detailed list of the possible API calls that the components can
perform.

In the table below we present the most important interfaces provided by the Anglics
Services. We should mention that for the retrieval of monitoring data and for storing
generated insights, Analytics Services utilize the Data Storage and Sharing Services.

Table7 APIs for Analytics Service

Method Path Descript ion Used By
GET /apilinsight Returns the status of the job that Logically Centarized
s/{deployme has the given {deployment_id}. Orchestration,
nt_id} Analytics Editor
Page300f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

Method Path Descript ion Used By

POST /api/insight Submits the job with an id equal to Logically Centarized
s/{deployme {deployment_id}. The latter id will Orchestration,
nt_id} be used to collect its status with Analytics Editor

the appropriate GET request. This
API requires as a body the
StreamSight queries the user
wants the job to execute.

PUT /api/insigh t Submits the job with an id equal to Logically Centarized
s/{deployme {deployment_id}. The latter id will Orchestration,
nt_id} be used to collect its status with Analytics Editor

the appropriate GET request. This
API requires as a body the
StreamSight queries the user
wants the job to execute.

DELETE /api/insight Deletes the job that has the given Logically Centarized
s/{deployme {deployment_id}. Orchestration,
nt_id} Analytics Editor

3.5 RAINBOW Edge Stack Components
3.5.1 Device Management

When adevice is onboarded on a cluster its capabilities are advertised in the logical
centralized orchestrator. Such capabilities include (indicatively) the existence of TPM
(for security reasons), the existence of special sensors/actuators etc. The A#fl the
device management componentthat is installed each device being onboarded is

summarized in the table below.
Table8 APIs for Mesh Routing Protocol Stack

Method Path Description Used By
GET /device/capabilities A read-only method that Logically
provides the summary of Centarized
the device capabilities Orchestration
PUT /device/reboot A put method that forces Logically
the device to reboot Centarized
Orchestration
GET /device/status A read-only method that Logically
fetches theconnectivity Centarized
status of the device Orchestration

3.5.2 Control Plane Management Module

Upon a successful onboarding to the mesh environment, an 10T node must join a K8S
cluster. This functionality is encapsulated under the family of kubeletelated methods as
depicted below. These methods are triggered by the Logically Centralized Orchestration

Page3lof 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

to commission and decommission the physical node to the cluster. The entire
communication is performed using the IPv6 overlay network that is beingetup based on

the secure mesh routing protocol stack as analysed in the next section.
Table9 APIs for Mesh Routing Protocol Stack

Method Path Description Used By
POST /kubelet/connec A method that forces a node to Logically
t attach to alogical centralized k8s Centarized
master Orchestration
DELETE /kubelet/discon A method that forces a node to Logically
nect disconnect from a k8s master Centarized
Orchestration
GET /kubelet/status ! | AOET A OEAO O Logically
connectivity status Centarized
Orchestration

3.5.3 Secure Mesh Routing protocol stack

The purpose of the Secure Mesh Routing stack is to establish and maintain a network of

edge nodes which will be used for contreplane and dataplane signaling. Hence, the

stack provides the node with secure-layer -3 connectivity to an existing mesh topolog

without having to statically configure its IP address or the IP address of one of its adjacent

nodes andautomate the process of binding 01 A O1 1 CEAAT 1T U AAT OOAI EUA
In general, a Mesh network is a type of network where each node ihda network may act as

an independent (peer) router, regardless of whether it is connected to another network or

not.

In a mesh environment network addresses are not statically configured since the risk of

conflict is high. Therefore, plain IP assignment @tocols cannot work. Hence it is the purpose

of the Mesh Protocol Stack to dpefine automatically an address within minimum chance

of collision; b) Use this address to join a peer-to-DAAO T AOxT OE xEOE OI EIi F
since the existing trusted network ha to attest the new node; cExecute the attestation

protocol in order to be accepted in a securityoverlay; d) Take part in the selection process

of a cluster-representative (cluster-head) which will be used to offload several
computational tasks.

The following tables summarizes the exposed APl methods of the respective components

that are grouped by.
Table10 APIs for Mesh Routing Protocol Stack

Method Path Description Used By

PUT /mesh/alterc A method that forces the node to Logically
onnectmode/ change the layef2 connectivity mode. Centarized
{modeid} The possible modes are BLIND, ¢ Orchestration

ATTESTATION_BASED
POST /mesh/joinm A method that attempts to join a node Logically
esh/{meshid} in an existing formulated cluster Centarized
based on tle MODEID Orchestration

Page320f 70

Copyright © RainbowConsortium Partners 2022022

~

RAINBOW

Method Path

DELETE /mesh/leave
mesh/{meshi
d}

GET /mesh/looku
p/{nodeid}

GET /mesh/neigh
borhood

GET /mesh/nodei
d

GET /mesh/public
key

GET /mesh/routin
gtable

PUT /mesh/setgat
eway/{gatew
ayid}

GET /mesh/status

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

Description
A method that forces a node to leave
cluster unconditionally

A method that performs DHT lookup
to check if a node eists in the
formulated topology

A method that exposes the first degree
of connections for a connected node

A method that returns thedescriptor
of a node. The descriptor has all type:
of information regarding connectivity
A method that retrieves the public key
of the k8s paster

A method that fetches a consolidatec
version of the routing states

A method that announces (in &
broadcast mode) the new gateway tc
the cluster

A method that reports the mesh
related connectivity state

3.5.4 Multi -domain sidecar proxy

Used By
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration

Each node that participates in the k8s cluster can host a containerized application. These
applications can be controlled by a transparent proxy that can be installed on top of the
exposed ports. This stands true in case ports expose HTTP and RPC services. In

21) . "/ 7h

OEA

i DAT O1 OOAA OAT OIT USs AiibpilTAT O

exposed in the following link: https://www.envoyproxy.io/docs/envoy/latest/api/api
However, RAINBOW has the obligation to preconfigure the proxy during tlteeployment
process. As such, the higlevel API calls that are exposed for such configurations is

provided below.

Table11 APIs for Mesh Routing Protocol Stack

Method Path Description Used By
POST /sidecar/apply/{nodeid} = A method that configures Logically
/{ componentid} an envoy proxy on top of Centarized
an existing component Orchestration
PUT /sidecar/remove/{nodei A method that removes an Logically

d}/{componentid}

envoy proxy on top of an Centarized
existing component Orchestration

Page33of 70

Copyright © RainbowConsortium Partners 2022022

https://www.envoyproxy.io/docs/envoy/latest/api/api

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW
3.5.5 Storage Agent & Storage Coordination

The APIs related to the Storage agent are presented in section 3.4.2.

3.5.6 Analytics Worker & Analytics Coordination

The APIs related to the Storage agent are presented in section 3.4.2.

3.5.7 Resource & Application -level Monitoring Agent

A Monitoring Agent is enabled on every cluster node, in order to capture Fogpde system
metrics like resource utilization, and metrics from the containerized services. To do that,
the Monitoring Agent enables probeghat are provided by the platform. Moreover, users
can expose other metrics by creating new probes extending the Probe interface of the
RAINBOW monitoring SDK. Moreover, the monitoring SDK provides functions for
application-level metrics extraction, thus wers can enable this functionality and the
system automatically disseminates metrics to the Monitoring Agent. Through that, users
can view and interact with performance data in a single unified environment instead of
dealing with different monitoring tool s.

__________ RAINBOW MESH STACK
e
4828, o, Container \
i ; ! Monitoring| _ (Monitorin
]
" Service : f_:E Agent [€ conigs Other RAINBOW
! User's Libraries | | ! (Services
1:: : "one-off"
1
o Monitoring : query | Orchestrator | -
':: ¢ Library Probel l/‘)
'\\‘ I) . Dashboard
s
Native c-grsu;;sl— | s =
Monitoring z
[Docker Metric | Probe () nalytics o
| Socket l Worker ‘—\] Analytics
Probe() continuous| Service
’ Operating System query

Figure 9 Monitoring Agentoverview

All monitoring data is exported by the Monitoring Agent to the local Storage Agent so that

users can query for both realime data and historical data persistently stored across the

Storage Fabric created on top of the overlay mesh network interconnectit@e A OOA 08 O 4
nodes. The Monitoring Agent exports all monitoring data to the local Storage Agent,

allowing users to query for both reattime and historical data that is persistently stored

via the Storage Fabric built on top of the overlay mesh network #t connects the user's

fog nodes.

We should note that the monitoring agent exposes the monitored metrics to the storage,
so do not receive any direct API request from the RAINBOW components. However, the
RAINBOW monitoring SDK communicates with the Ageim order to publish the app
level metrics.

Page34o0f 70

Copyright © RainbowConsortium Partners 2022022

~

RAINBOW

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release
Date: 3.01.2023

Dissemination Level:PU

Table12 APIs for Monitoring Agent

Method [Path

Description

Used By

POST Imetrics/

This API call is exposed by the monitoring 5 OA 06 O A
agent and the MonitoringSDK library can | via
disseminate applicationlevel metrics MonitoringSDK

3.5.8 Security Enablers

ForA 1 AOE 11T AA OI
process is initiated by the Logical Centralized Orchestrator and is addressed as
attestation. In the jargon of attestation, the initiator is addressed as Verifiemal the entity
that is being validated in addressed as prover. The communication among the verifier and
the prover is addressed as attestation protocol. The protocol relies on the fact that initial

ET OACOEOU

ETET A Al OOOAO A OOAOEAEAAOI

i AAOOOAO j AsBEs AdE EGIAIGBAT EAOEAOQ AC

During runtime, the mesh admission control protocol is requesting the execution of the
formal attestation protocol prior to assigning a cryptographic key and an IPv6 address
that will be used for the control plane signalling. The API calls that matialize the

attestation process is the following:

Method Path

POST /attestat
ion/ trig
ger

POST /{nodei
d}
/attestat
ion/
respons
e

Table13 APIs for Mesh Routing Protocol Stack

Description

Used By

Logically Centarized Orchestrationacting asa Logically
Verifier calls this endpoint to initiate the Centarized
attestation process by providing a random Orchestrati
nonce generated and signed by theverifier on
(challenge). After the signatureverification, the

attestation component returns the triggers

internally the attestation process via the

Attestation Controller providing the same

nonce, the signature of the Verifieand the type

of service to be invoked.

This endpoint is triggered by the Proveria the Logically
control plane to provide the attestation Centarized
response. In the case of Attestation bQpuote a Orchestrati
guoted message signed by théK is returned on

from the Attestation Controller to the Local

Control and Management Framework and

finally to the Logically Centralized Orchestrator

(Verifier) to verify the signature and the quote

with the stored golden hashes. In the case «
Attestation by Proof a signature with theAK is

returned through the same path tothe Verifier

to verify the signature representing the correct

state of thedevices.

Page350f 70

Copyright © RainbowConsortium Partners 2022022

—

RAINBOW

Method
PUT

Path

/{ nodei
d}
/attestat
ion/

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

Description Used By
The methodsends a list of hashvalues (golden Logically
hashes stored in theMeasurements Database Centarized
representing the trusted configuration of the Orchestrat
binaries that are known to be correct. This on

TRashVa represents the correct state that needs tdbe

lu
es

considered in the CIV process and i
immediately followed by the creation of the
Attestation Key (AK) binded to the new
expected state as a trusted referencealue.

Page360f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

4. RAINBOW Platform Installation

For the final release oRAINBOWwe further enhance the installation procedure in order

to include all the RAINBOW components, provide more advanced configuration options

and an easyto-use installation guide for the whole platform. All the installation

ET OOOOAOEI T O AOA AOAEI AAT A TTTETA AT A Al1OEI
in aReadTheDocs page, attps://rainbow -h2020.readthedocs.io

For the purpose of document completeness, in the following subsections we will provide
the complete ingallation instructions.

4.1. Prerequisites

RAINBOW supports a wide variety of Linux capable devices (VMs, Raspberry pi,
wearables, drones etc) and the most widespread distributions such as Ubuntu and
Debian.

In the previous release ofRAINBOW,we provided the installation instructions and
prerequisites for the core platform components, in this release we also developed an
automated procedure for the Dashboard component that needs a separate node (Bare
metal or VM) to operate. For thatreason,we separate the prerequisites into the core
components prerequisites and the Dashboard prerequisites.

For the core platform components,the minimum execution requirements are at least 4
CPU cores, 8GB of RAM, 40GB of storage and x86 based CPU architeciutied master

node and 2 CPU cores, 2GB of RAM, 20 GB of storage and either x86 or ARM based CPU
architecture for the worker nodes. For more advanced use cases we propose a master
node with at least 4 CPU cores and 16GB of RAM and worker nodes with 2 Cé&dscand

4GB of RAM. Moreover, RAINBOW supports GPU enabled devices, as also most of the
devices which register under the/dev Linux path

For the Dashboard component the minimum execution requirements are 2 CPU cores,
4GB of RAM, 20 GB of storage and x8&ded CPU architecture.

4.2. RAINBOW Platform Setup

Compared to the second release of RAINBOW we logically divided the installation
procedure into three main stages. The first stage is the core platform setup and consists
of the docker engine, the Mesh Neork, the Kubernetes cluster and the Rainbow
components such as the Logically Centralized Orchestrator along with the Orchestration
Lifecycle Manager and their subcomponents. The second stage is the Analytics Stack
setup which consists of the MonitoringData Storage and Analytic Services components
and the third stage is the Dashboard setup which consists of the Dashboard component.
All the installation scripts along with instructions are also gathered in a public accessible
GitLab repository, athttps://qgitlab.com/rainbow -projectl/rainbow -installation.

Page370f 70

Copyright © RainbowConsortium Partners 2022022

https://rainbow-h2020.readthedocs.io/
https://gitlab.com/rainbow-project1/rainbow-installation

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

main v rainbow-installation / installation-scripts + v History Find file Web IDE v ¥ v
Name Last commit Last update
{ } calico.yaml
& cjdns.txt d tallati t file nt
coreDnsDeployment.json
init-02-cjdns.sh jashboa

& init-03-cjdns-ipv6.py

init-03-cjdns-worker.py add installation script files 0 months ago

& init-04-configure-host.py) t t file ntt

7] init-05-docker-debian.sh ac tallat t files 10 ntt
init-05-docker-ubuntu.sh t ti t file ntt
init-06-docker-configure.sh : tallati file ntt
init-07-k8s-debian.sh ad ing uf
init-07-k8s-ubuntu.sh a t ti t file ntt
init-08-k8s-master.sh ad allatic t file ntt

& init-09-k8s-master-configure.py
init-10-install-rainbow-orchestrator.sh ad stallation s t file 0 months ago

& init-11-cjdns-master-credentials.py lati t file ntt

. init-12-k8s-join-master.py add inst tion s 0 montt

{-} k8s-init-config-ipv6.yaml i ti file ntt

(3 rainbow-v3-master.sh

rainbow-v3-worker.sh feat jate r

Figure 10 Core platform installation scripts

The firststep of the iIlOO OOAGCA EO OEA OAOODP AT A Ail £ZECOO.
that can be achieved by the execution of th@inbow-v3-master.shscript, as depicted in

Figure 10. The only configuration that is required by the user is to provide the necessary

docker credentials for the containerized components. So, in order to achieve this the user

needs to edit therainbow-v3-master.shby setting the corresponding docker variabls at

the beginning of the script and then just execute it.

$sudo ./rainbowv3-master.sh

The installation procedure consists of the setup and configuration of the docker engine,
the prerequisites of the Mesh Network along with the Mesh Networktself, the
Kubernetes Master node and finally the Rainbow components such as the Logically
Centralized Orchestrator along with the Orchestration Lifecycle Manager and their
subcomponents. After the successful execution of the script it will provide an
acomplishment message along with necessary information for the next steps. In case of
a failed execution the script will stop the procedure and will display the error that
occurred.

Page380f 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

The second step of the first stage is the setup and configuration of th€dd OA 08 O x1 OE,
nodes that can be achieved by the execution of thainbow-v3-worker.sh script, as

depicted in Figure 10, at each one of the worker nodes. In this case the user needs to
configure the script with the values that are printed after the succed$sl execution of the

i AOOAOGO 11T AA OAOEDPO8 41 AAAirdirbdwEDork€d.shE O OE A
script and set the corresponding variables at the beginning of the script and then just

execute it.

$sudo ./rainbowv3-worker.sh

There are somespecial occasions in some devices, where the official linux kernel had
some flags disabled and the Mesh Network was not able to work properly. In RAINBOW
we have addressed that issue and concluded in some peenfiguration steps which
downloads the sourcecode of the kernel, enables the necessary flags, recompiles the
source code and then instals the new kernel. Since that procedure can cause a lot of issues
and need extra attention by the user, we do not offer it as an automated script. All the
aforementioned steps are offered as analytic instructions in the form of a Readme file in
the public GitLab repository, at https://gitlab.com/rainbow -projectl/rainbow -
installation/ -/tree/main/xavier -device and as a special section on the ReadTheDocs
page, at https://rainbow_-
h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#sp
ecial-case

Name Last commit Last update
Eastorm update configurations and docker-composes of analytic and mo... 4 months ago

env ntroduce more detailed configurations 4 months ago
{-} docker-compose.yaml update configurations and docker-composes of analytic and mo... 4 months ago

Figure 11 Analytics Stack master node installation files

The second stage is the installation of the Analytics stack with the first step to be the
installation and configuration on the master node. For that step the user needs to
configure the variables of the.envfile, which is depicted in Figurell. Those varables
along with their description are shown in the Table8 below.

Table14 Analytic Stack master node installation variables

NODE_IPV6 Node's IPV6

NODE_IPV4 Node's IPV4

PROVIDER_HOSTS The IPs of the nodes that the system will retrieve it
data (all nodes' ips)

NODE_HOSTNAME Node's hostname/ip

STORM_NIMBUS_CONFIG_FIl The path of Storm Nimbus configuration file

Page390f 70

Copyright © RainbowConsortium Partners 2022022

https://gitlab.com/rainbow-project1/rainbow-installation/-/tree/main/xavier-device
https://gitlab.com/rainbow-project1/rainbow-installation/-/tree/main/xavier-device
https://rainbow-h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#special-case
https://rainbow-h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#special-case
https://rainbow-h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#special-case

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

STORAGE_PLACEMENT Enables and disables the placement algorithm of th
storage. Default is False.

STORAGE_DATA_FOLDER The folder that the data of the Storage componer
will be stored persistently

After the variables configuration the user needs just to execute th@ockercompose up
command.

$dockercompose upd

The Analytics Stack includes the Apache Storm and Nimbus. Generally, the configuration

of Nimbus needs no alteration. Howevenisers can update the provided files from the
aforementioned repositories accordingly. Furthermore, users can also add other
configurations of Storm Framework
(https://storm.apache.org/releases/current/Configuration.html). Finally, users can
introduce other OAEAAOI ET ¢ OOOAOACEAO j ET Al OAET ¢ 21)
configuration file. For instance, if users set storm.scheduler equals to
ResourceAwareScheduler and its strategy to be EnergyAwareStrategy, the execution will

try to minimize the energy consumption. The following Figure 12 depicts a
representative RAINBOWenabled Nimbus configuration file.

storm. zookeeper. Servers:

- "cluster-head-IP" # update with master's IPv4
nimbus.seeds: ["cluster-head-IP"] # upd with maste Pv4
storm.log.dir: "/logs"
storm.local.dir: "/data"
storm.local.hostname: “"cluster-head-IP" # update with master's IPv4
supervisor.slots.ports:

- 6700

- 6781

- 6702

- 6703

nimbus.thrift.max buffer size: 20480000

supervisor.thrift.max buffer size: 204800800
topology.component.cpu.pcore.percent: 1000.0

topology.component. resources.onheap.memory.mb: 512.0

storm.scheduler: "org.apache.storm.scheduler.resource.ResourceAwareScheduler"
topology.scheduler.strategy: "eu.rainbowh2028.Schedulers.EnergyAwareStrategy"

Figure 12 Analytics Scheduler Configuration File

Name Last commit Last update
Eastorm feat: update README.md and add analytic-stack 5 months ago

.env ntroduce more detailed configurations 4 months ago
{-} docker-compose-arm32.yaml fixes on data mngm node compose files 1 month ago
{.} docker-compose-armé4.yam| fixes on data mngm node compose files 1 month ago
{-} docker-compose.yaml fixes on data mngm node compose files 1 month ago

Figure 13 Analytics Stack worker node installation files

Page40of 70

Copyright © RainbowConsortium Partners 2022022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboardrinal Release

Date: 3.01.2023
Dissemination Level:PU

RAINBOW

The second step of that stage is the Analytics stack step on the worker nodes. The
procedure is similar to the previous step but in that case the user needs to configure the
variables of the.envfile that are presented and described at Tabl8.

Table15 Analytic Stack worker node installation variables

MONITORING_CONFIGURATION_FILE The path of monitoring agent
configuration file

STORAGE_RAINBOW_HEAD Cluster head's IPV4/IPV6
STORAGE_NODE_NAME Node's hostname
STORAGE_PLACEMENT Enables and disables the placemer
algorithm of the storage. Default is False.
STORAGE_DATA FOLDER The folder that the data of the Storage

component will be stored persistently

Furthermore, userscan (optionally) configure the parameters of the monitoring agent by
providing its configuration file. By default, the RAINBOW monitoring agent captures all
utilization metrics from the underlying node and the containerized services (as described
in Deliverable D3.2). Through the configuration file, users can enable or disable specific
metrics, and apply adaptive monitoring and dissemination techniques in order to
minimize the monitoring metrics' size and the monitoring computational footprint. The
following image highlights a representative configuration file of the monitoring
configurations.

Figure 14 Monitoring configuration file

Page41o0f 70

Copyright © RainbowConsortium Partners 2022022

