®

RAINBOW

Project Title AN OPEN, TRUSTED FOG COMPUTING PLATFORM
FACILITATING THE DEPLOYMENT, ORCHESTRATION AND
MANAGEMENT OF SCALABLE, HETEROGENEOUS AND SECURE
I0OT SERVICES AND CROSS-CLOUD APPS

Project Acronym RAINBOW

Grant Agreement

No 871403
Instrument Research and Innovation action
Call / Topic H2020-ICT-2019-2020 /
Cloud Computing
Start Date of 01/01/2020
Project

Duration of Project 36 months

D5.4 RAINBOW Integrated Platform and
Unified Dashboard - Final Release

Work Package WP5 - Continuous Integration and Accessibility

Lead Author (Org) Ioannis Avramidis, Alex Bensenousi (INTRASOFT)
Contributing Author(s) Alex Vasileiou, Konstantinos Theodosiou, Giannis Ledakis
(Org) (UBI); Raphael Schermann (IFAT); Thomas Pusztai

(TUW); Moysis Symeonidis (UCY); Heini Bergsson Debes
(DTU); Stefanos Venios (SUITE 5); Casseti Claudio Ettore
(POLITO); Theodoros Toliopoulos (AUTH)

Due Date 31.12.2022
Actual Date of Submission | 30.01.2023
Version V1.0

Dissemination Level

x | PU: Public (*on-line platform)

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)
CO: Confidential, only for members of the consortium (including the Commission)

The work described in this document has been conducted within the project RAINBOW. This project has received
funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the Grant
Agreement no 871403. This document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.

&

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Versioning and contribution history

Version Date Author Notes

0.1 15.11.2022 Ioannis Avramidis, Alex Bensenousi Initial ToC
(INTRASOFT)

0.2 25.11.2022 loannis Avramidis, Alex Bensenousi First Draft
(INTRASOFT)

0.3 30.11.2022 | Konstantinos Theodosiou,(UBI); Thomas Contributed to components
Pusztai (TUW); Demetris Trihinas, Moysis | integration status, status,
Symeonidis (UCY); Stefanos Venios and unit testing.
(SUITE 5); Casseti Claudio Ettore
(POLITO); Theodoros Toliopoulos (AUTH);

0.4 10.12.2022 | Alex Vasileiou, Giannis Ledakis (UBI); Updating the orchestration
Thomas Pusztai (TUW); part in section 3

0.5 20.12.2022 loannis Avramidis, Alex Bensenousi Updated version, including
(INTRASOFT), Alex Vasileiou (UBI) installation instructions

(section 4)

0.6 10.01.2023 Ioannis Avramidis, Alex Bensenousi Updated section 6, ready for
(INTRASOFT) review

0.6.1 20.01.2023 Demetris Trihinas (UCY) 1st Review

0.6.2 23.01.2023 Giannis Ledakis (UBI) 2nd Review

0.9 27.01.2023 loannis Avramidis, Alex Bensenousi Addressing Reviewers'
(INTRASOFT) comments and Final

version
1.0 30.01.2023 | Christina Stratigaki (UBI) QA review and Submission
Disclaimer

This document contains material and information that is proprietary and confidential to the RAINBOW Consortium
and may not be copied, reproduced, or modified in whole or in part for any purpose without the prior written consent
of the RAINBOW Consortium

Despite the material and information contained in this document is considered to be precise and accurate, neither the
Project Coordinator, nor any partner of the RAINBOW Consortium nor any individual acting on behalf of any of the
partners of the RAINBOW Consortium make any warranty or representation whatsoever, express or implied, with
respect to the use of the material, information, method or process disclosed in this document, including merchantability
and fitness for a particular purpose or that such use does not infringe or interfere with privately owned rights.

In addition, neither the Project Coordinator, nor any partner of the RAINBOW Consortium nor any individual acting on
behalf of any of the partners of the RAINBOW Consortium shall be liable for any direct, indirect, or consequential loss,
damage, claim or expense arising out of or in connection with any information, material, advice, inaccuracy or omission
contained in this document.

Page 2 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Table of Contents

1. Introduction
1.1 Document Purpose and Scope
1.2 Relationship with RAINBOW Deliverables
1.3 Structure of the deliverable

2. RAINBOW Integrated Platform Architecture

2.1 Conceptual architecture updates

2.2 Technical feedback from the 2nd platform release usage and demonstrators

2.2.1 Human Robot Collaboration Demonstrator
2.2.2. Digital Transformation of Urban Mobility Demonstrator
2.2.3. Power Line Surveillance Demonstrator

3 Implementation and Integration Status

3.1 Final Release Overview
3.1.1 Overall Integration and Component Dependencies

3.2 Orchestration Layer Components
3.2.1 Logically Centralized Orchestrator
3.2.2 Orchestration Lifecycle Manager
3.2.3 Pre-deployment Constraint Solver
3.2.4 Backend Services

33 Modeling Layer and Dashboard Components
3.3.1 Service Graph Editor & Analytics Editor
3.3.2 Policy Editor

3.4 Data Management & Analytics Layer Components

3.4.1 Data Storage and Sharing
3.4.2 Analytics Service

3.5 RAINBOW Edge Stack Components
3.5.1 Device Management
3.5.2 Control Plane Management Module
3.5.3 Secure Mesh Routing protocol stack
3.54 Multi-domain sidecar proxy
3.5.5 Storage Agent & Storage Coordination
3.5.6 Analytics Worker & Analytics Coordination
3.5.7 Resource & Application-level Monitoring Agent
3.5.8 Security Enablers

4. RAINBOW Platform Installation
4.1. Prerequisites
4.2. RAINBOW Platform Setup
5. RAINBOW Usage Guide
6. Technical Evaluation and Quality Assurance

6.1. Continuous Integration and Quality Assurance
6.1.1. Version Control System - Gitlab
6.1.2 Container Registry

Page 3 of 70

Copyright © Rainbow Consortium Partners 2020-2022

©o vV v ©

10
10

12
12
12
13

15

15
16

16
16
21
22
23

26
26
28

29
29
30

31
31
31
32
33
34
34
34
35

37
37
37
44
56

56
56
56

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

6.1.3 Issue Tracking - Gitlab
6.1.4 Software Quality Evaluation
6.1.5 Continuous Integration Flow

6.2. Testing Procedures of the RAINBOW Final Release
6.3. Unit Testing
6.4. Integration Testing

7. Conclusions

References

Annex I: Unit Tests for Final Release

Page 4 of 70

Copyright © Rainbow Consortium Partners 2020-2022

57
58
58

59
59
59
65
66
67

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

List of tables

Table 1 Overview of Final Release Functionalitiescc.oueeenneneesesnseeseeseeseesseesseseesseses 15
Table 2 Public RAINBOW Orchestrator APIS..... o rneeeeneeeesessesssesesseesessessesssssessesseessessessees 18
Table 3 Internal RAINBOW Orchestrator API TYPESomnemrnisneenensessessssssessssssessssssesaes 20
Table 4 APIs for User & Infrastructure Management ... 24
Table 5 APIs for Service Graph, Analytics Interpreter and Policies Interpreter................. 25
Table 6 APIs for Data Storage & Sharing.......cnensss s sssssssssssssaes 29
Table 7 APIS fOr ANALYLICS SETVICE ..cvvuiereresireeresrisissisessesesssssssessesssssssssessssssssssesssssssssssssssssssssssssssenns 30
Table 8 APIs for Mesh Routing Protocol Stackcenenreneneensiseeeesesessessessssseseessessesees 31
Table 9 APIs for Mesh Routing Protocol STackneiessessssssssssssessssssssssesaes 32
Table 10 APIs for Mesh Routing Protocol Stack......conenenrencnesneeneseeseesessessessesseseessessenees 32
Table 11 APIs for Mesh Routing Protocol Stack.......ssssesssssssssens 33
Table 12 APIS for MONItOring AZENT ... reereerinineessessessssssssssssesssssessssssssssssssssssssssssssssssssssssessssnes 35
Table 13 APIs for Mesh Routing Protocol Stack........nencnenenseneseessesessessessesseseessessesnees 35
Table 14 Analytic Stack master node installation variables ... 39
Table 15 Analytic Stack worker node installation variables ... 41
List of figures

Figure 1 Roadmap for RAINBOW DeVElOPMENTccrereerreminenenessessssssssssnsssessesssssssssssessessessssns 10
Figure 2 Roadmap for RAINBOW Developmentcccrereeneerernesneesessesseessessessessesssssesessesseenes 15
Figure 3 Logically Centralized Orchestrator Components and Interactions...........occneen. 17
Figure 4 Orchestration Lifecycle Manager Components and Interactions..........oooen. 21
Figure 5 Affinity /Anti-affinity rules BUttON ... 27
Figure 6 Create an affinity TULE ... 27
Figure 7 Analytics EAItOr UPAAte........ e sesessessessessessessesssssessessssssssssssessessessesnes 28
Figure 8 PoliCY EdItOr UPAAteoocrureereeceeerererseeseseseesessesssssesesssssessessssssssssssssssssesssssssssssssssssssssnes 28
Figure 9 Monitoring Agent OVEIVIEW ... ssssssssssssssssssaens 34
Figure 10 Core platform installation SCIIPLS ..o sessesseesses s ssssssessessesseenes 38
Figure 11 Analytics Stack master node installation files.........comnnnnen: 39
Figure 12 Analytics Scheduler Configuration File........nienssssesessesesseens 40
Figure 13 Analytics Stack worker node installation files.......corrnnenrenreneneseeneeneeseneens 40
Figure 14 Monitoring configuration file..........ss s 41
Figure 15 Dashboard installation SCIriPLS.....uenineneeesssssssesessssssessesessssessessessssssssssessens 42
Figure 16 Login page of the RAINBOW Dashboard ... 44
Figure 17 Main page of the RAINBOW Dashboard ... 45
Figure 18 COmMPONENtS' LIST.....eereereereeeeeeseressesresseseessessesses s sesssessesssssessesssessessesssssesssssssessesesnes 45
Figure 19 Component CONfIGUIAtiON. ... rereurrereereeeessesesseesessesseessessessssssssssssssessessssssssssssessessessssnes 46
Figure 20 Application CreatiON ... eereeseesrirrs s ssssesssssssssssssssssssans 46
Figure 21 APPliCAtiONS’ LISt ereereereeseeeesesressessesseeeesessessessessesssssessesssssssessssssessesssssesssssssessessesnes 47
Figure 22 RESOUICE CrEATION ..ot ses et s s 47
Figure 23 Application INStance Creation ... ieeeenseninessesssesssssssssssssesssssssssssssssssssssssssnns 48
Figure 24 Application Instance service graph editor ... 48
Figure 25 Application Instance service graph editor - Component editing..........ccovevneeen. 49
Figure 26 Application Instance service graph editor - affinity/anti-affinity........cceuue 49

Page 5 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Figure 27 Application Instance service graph editor - set affinity rules..........comnreneenn. 50
Figure 28 Application INSTANCES LiSt.......oceererreererreeeeeeresseesessesseesessessessessesssssessesssssesssssssssessesseses 50
Figure 29 Service graph monitoring - Part L. ssssssssessesssenes 51
Figure 30 Service graph monitoring - Part Z.......enesssssssessessessessesssssssessssens 51
Figure 31Analytics and SLO EdITOr ..o sesseeseesessessessessessesssessesssssessssssessessessesnes 52
Figure 32 Creation of @ NewW analytiC ... sssssssssssssens 52
Figure 33 Adding expressions on the analytiC.......nenseeesse s 53
Figure 34 Creation 0f @ NEW SLO ... eesesses s ses e ssesss s ssssssssesssnes 53
Figure 35 Add metrics in the SLO ... ssssssssssssssans 54
Figure 36 Add Computations £0 the SLO ... ses s sesssssessessesssenes 54
Figure 37 Add EXpressions to the SLO ... seseeeesesesseesessessssessessss s sssssessesssenes 55
Figure 38 RAINBOW'’s Gitlab group and repoSitOries......uermeenessssesesssessessssssssssesssnans 56
Figure 39 RAINBOW cONtainer IMages......oureemrnsresmnessssnessesssssssssssssssssssssssssssssssssesssssssssssssessens 57
Figure 40 RAINBOW ISSUESccoiureureureereeeeeessessessessesssssssssessesssssessssssssesssssssssssssssssssssessssssssssssassssessssnes 58
Figure 41 RAINBOW'S CI flOW ...t sssssesssssssssssssssssssssssssessssssessssssesssssssssssssns 59
Figure 42 Defining request parameters of a REST call.......ccornenceneenenreneseseeseeeesenneens 60
Figure 43 Defining assertions based on the expected response of a REST call................. 61
Figure 44 Overview of integration tests in ReadyAPI ... 62
Figure 45 Integration teSt reSults (PArt 1) .. eoerenenesneeseeeesesseesessessesessessessesssssssssessesssees 63
Figure 46 Integration test reSults (PArt 2) ... 64

Page 6 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
List of acronyms
Acronym Full name
GPS Global Positioning System
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IT Integration Testing
IPR Intellectual Property Rights
PCR Platform Configuration Register
RAM Random Access Memory
REST Representational state transfer
SDK Software Development Kit
SLO Service Level Objectives
TPM Trusted Platform Module
Ul User Interface
URL Uniform Resource Locator
UT Unit Testing
VCS Version control systems
WPx Work Package
YAML YAML Ain't Markup Language

Page 7 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Executive Summary

This deliverable is a public report presenting the final software release of the RAINBOW
integrated platform. It presents the functionalities provided by the components as part
of the integrated platform and provides the final version of the architecture with
highlights on the interface. In total, 3 distinct releases of the RAINBOW Platform were
planned with 3 corresponding supporting documents. This document constitutes the
version of a live document that was constantly updated to depict the developments of the
RAINBOW platform and, which coincides with the final release of the RAINBOW
integrated platform.

For this final release full integration has been achieved among all platform components,
and minor improvements have been made, thus providing a homogenized user
experience. A complete flow of platform usage is part of the document, along with
updated instructions for the installation of the platform as a whole. Finally, updated
results of the technical evaluation and quality assurance are provided, including
integration testing that has been executed along with the delivery of last release of the
RAINBOW integrated platform.

Page 8 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
1. Introduction

1.1 Document Purpose and Scope

This document has as a purpose to accompany RAINBOW’s final platform release. The
following chapters describe the final steps taken with regards to the integration of
RAINBOW’s components towards a complete, stable, functional, and user-friendly
framework as well as the guidelines for the final prototype installation and utilization to
facilitate its future evolvement, use and exploitation.

1.2 Relationship with RAINBOW Deliverables

Like its previous releases, this deliverable uses RAINBOW's outcomes such as the
reference architecture, integration approach, and overall, the platform evolution as
documented in several deliverables like D1.2, D5.1, 5.2 and 5.3. In the same way, this
document also consolidates the technical developments of the different components
under WP2, WP3 and WP4, and presents the results on the testing and integration
procedures and actual work as reported in the respective first and second release
deliverables. Finally, for this document we also utilized feedback resulted from the final
releases of the demo reports i.e.,, D6.3, D6.5, and D6.7 as input for further fixes and
improvements. That being so, all information provided herein is used as support material
for the final release of the RAINBOW platform.

1.3 Structure of the deliverable

The rest of the deliverable is structured as follows.

. Section 2 presents updates on the architecture based on the feedback that was
collected from the second release

. Section 3 provides an overview of the functionalities provided and integration
points of RAINBOW's final release.

. Section 4 adumbrates the last version of the platform’s installation and set-up
guides.

. Section 5 presents how the RAINBOW platform is used.

. Section 6 provides the latest results of the technical evaluation

. Section 7 concludes the document.

Page g of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

&

RAINBOW

2. RAINBOW Integrated Platform Architecture

2.1 Conceptual architecture updates

The goal of this deliverable is to report on the fine-grained APIs of the finalized
architecture. The architecture per se has not been amended when compared to previous
deliverables since the componentization represents the final code-level structure.
However, in the frame of this deliverable, 18 concrete groups of APIs have been
abstracted to make the presentation of the platform more comprehensive. Figure 1
depicts the final architecture along the code names of the reported APIs. The notation
that has been selected is LayerX.GroupY-API.

Service Provider

Modeling Layer

odelling. SGNGMT-API
8 cloud-native ..h.al Service Graph [@esesee Policy Analytics | |
components Editor] Editor Editor e
Developer
i Data Analyst
i Modelling.POLIEYMGNT-Ap) Modelling. ANALEDITOR-API
A i A
Service Graph
Tempiate Policy Repository
Repository
p
Orchestration Layer Orchestration.BES-API
A A
(——
Operational Backend Services
Dashboards |~ ™ Data Management
\isenand service Graph | [Anaiyt Policy and Analytics Layer
Service Provider Modelling.DASHMGMT-API| | Infrastructure g o ez vl
= Manager Intepreter Intepreter Intepreter
A IC3AT .
Pre-Deployment AANALYTIG 1[Analytics Service
Constraint Solver |
Orchesiration.LCO-API
[Orchestration POCS- AP 3
N k&
Logically Centralized Orchestration DataManagement. STORAGE-API
Cloud |aa$S Provider
» | Deployment Orchestrator Resource
Cloud 1aas } Manager Repository Manager - Da(ajr:crags and
Resources | Sharing
\ =)
Orcheslration LCM-API
(N
Orchestration Lifecycle Manager
Policy Manager Application
(Runtime Lifecycle Scheduler 75
Contraint Solver) Manager] _‘_
. i
Cluster-head Fog Node

----------------------- Service Discovery and Service Discovery and
Analytics Coordination Storage Coordination

\ 4
Edge.DEVICEMGMT-API Edge.MONITORING-AP}
Edge. SECURITY-API Edge. STORAGE-AP! |
|

Edge KUBELET-API

r 3\

Mutti-domain | | Control Plane Device Security | Analytics Storage Monitoring |

Sidecar Proxy| | Management | [Management]| Enablers || Worker Agent Agent |
L

J
Open Container Initiative (OCI)) ‘ ‘
J

RAINBOW Edge Stack
Edge.PROXY-API Edge ANALYTICS-API
1 Edge.MESH-API

|
Mesh Routing
l_ — — — & I Protocol Stack

Fog Device Vendor (

Figure 1 Roadmap for RAINBOW Development

Initially, the Modelling.SGMGMT-API (Service Graph Management API for Editor &
Repository) is responsible for exposing all methods that author service graphs. This API
includes not only valid service graphs, but also metadata that are used during initial

Page 10 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

deployment and runtime reconfiguration. Moreover, the Modelling. POLICYMGMT-API
(Policy Editor & Repository API) is responsible for exposing methods that are attaching
(adding/removing) deployment-time and run-time policies.
The Orchestration.BES-API (Backend Services API) is the ‘thin layer’ between the
modelling tools and the logically centralized orchestrator. It is the cornerstone API
through which instances of service graphs and policies are interpreted. On the other
hand, the Orchestration.LCM-API (Orchestration Lifecycle Manager API) exposes the
public state of executable service graphs and manages this state through low-level
orchestration commands. Regarding the initial state of a service graph deployment, the
Orchestration.PDCS-API (Pre-Deployment Constraint Solver) is responsible for finding
the optimal solution for placement; thus, making use of all soft and hard constraints that
are expressed through the ‘attached’ policies.
The binding on the runtime orchestration elements with the K8S runtime is provided by
the Orchestration.LCO-API (Logically Centralized Orchestration API). The project took
the decision to conceptually comply with Kubernetes (K8S) i.e., to use the extensibility
mechanisms for job scheduling, placement and management. These low-level bindings
are exposed by the LCO-APIL The high-level interaction of a DevOPs user with the
Orchestrator is performed through the Modelling.DASHMGMT-API (Dashboard API).
Beyond the ‘logically centralized part’, RAINBOW relies on an edge ‘bundle’ which is
addressed as RAINBOW Edge Stack. The submodules that comprise this bundle are 8,
which include:

e Edge.DEVICEMGMT-API (Device Management API) for capabilities exposure

(sensors, actuators, TPMs)

e Edge.MESH-API (Mesh Routing Protocol Stack API) for materialized the overlay
onboarding

e Edge.KUBELET-API (Control Plane Management Module API) for materializing
the joining to the logical centralized k8s cluster

e Edge.PROXY-API (Multi-domain Sidecar Proxy API) for configuring envoy service
HTTP/GRPC proxies

e Edge.SECURITY-API (Security Enablers/Attestation API) for performing
integrity verification tests

e Edge.MONITORING-API (Resource and Application Monitoring Agent API) for
low level monitoring stream extraction

e Edge.STORAGE-API (Storage Agent API) that support analytic pipeline edge
storage requirements

e Edge.ANALYTICS-API (Analytics Workers API) that support analytic pipeline
edge execution requirements

Finally, a set of complementary APIs are exposed in order to perform Analytics tasks.
These includes the Modelling.ANALEDITOR-API (Analytics Editor API) for authoring
pipelines and DataManagement.STORAGE-API (Data Storage and Sharing API) and
DataManagement.ANALYTICS-API (Analytics Service API) for storage and execution
respectively.

All the aforementioned APIs are thoroughly discussed in the frame of the current
deliverable.

Page 11 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

2.2 Technical feedback from the 2nd platform release usage and

demonstrators

Towards improving the final release of the rainbow platform, we took advantage of the
feedback gained from the use case demonstrators while installing, configure and using
second release's different functions in a physical demo set up. The value of these tests was
that they allowed us to get our hand on the behaviour of the system in real conditions.
More specifically, the integration team had the chance to compare the platform’s
deployment and usage against the 1st release, and evaluate the monitoring, configuration
of service level objectives and metrics, as well as the usage of different platform
components. Overall, the deployment and use of the 2nd release of RAINBOW platform
presented no significant issues, while the platform was found to be more user-friendly and
feature-rich by the demo partners. On the other hand, as a result of this testing activity,
RAINBOW's technical partners also received bug reports as well as points where the
platform's behaviour is open to further improvements as can be found bellow.

2.2.1 Human Robot Collaboration Demonstrator

In this pilot, a human-robot collaboration system was tested with multiple applications
such as robot motion tracking, personnel localization and collision prediction, requiring
these applications to have (i) scalability, (ii) easy management, (iii) analytics, and (iv)
Quality of Service. RAINBOW’s orchestration, deployment, management and analytics
functionalities were used to accomplish these goals. After the running of this
demonstrator the following bugs fixing/feature request were suggested:
Deployment recommendations:

. All the remnants of any previous RAINBOW installation were removed before

starting the installation of the 2nd release
o [feature request, for easier upgrades as part of a commercial solution].
. A more dynamic management (through the dashboard UI) of the SLO policies
and analytics will be considered an Ul enhancement
o [feature request, taken into account for the improvements in final version
of SLO UI].

Configuration of Service Level Objective and Metrics:
. Adding SLOs in this use case requires other metrics such as network and

custom metrics such as the queue properties of the used RabbitMQ queues
o [Feature request, taken into account and network metrics have been
provided as part of the final release of RAINBOW].

2.2.2. Digital Transformation of Urban Mobility Demonstrator

In this case, the goal was to demonstrate how RAINBOW can contribute to fulfil a real-
time geo-referenced notification system about a hazardous situation for vehicles
travelling in urban areas while also acting in the vehicle communication field. This is a
scenario where the optimum balancing between MEC and Fog Node in terms of energy

Page 12 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

consumption, bandwidth occupancy, accuracy and latency is required, while a secure
data collection and distribution of messages to enable a scalable bidirectional
communication is equally important. RAINBOW’s modelling layer, orchestration, secure
enrolment, privacy preserving exchange of messages were used to achieve these goals.
After the running of this demonstrator the following bugs fixing/feature request were
suggested:

Deployment recommendations:
. On the deployment of the 2nd release, Nvidia Xavier was used without a reset

of the machine to avoid the kernel setup that was a complex procedure already
for the 1strelease.

o [Nonissue, but a limitation in the current version of the OS of the Nvidia
Jetson/Xavier device. We expect better support on newer OS versions.]

2.2.3. Power Line Surveillance Demonstrator

The role of the physical demonstrator was to simulate real conditions during inspection
missions along power lines by implementing a distributed GCS that will govern a swarm
of drones to optimize their operations and increase the swarm’s range, autonomy while
eliminating the execution of fail-safe procedures due to interference or interruptions in
the radio link. RAINBOW’s service graph and policy editor, pre-deployment container
solver, analytics service, and mesh routing protocol stack were employed to address
these challenges. After the running of this demonstrator the following bugs fixing/feature
request were suggested:
Deployment recommendations:

. Since the worker nodes were based on the Jetson TX2 computers, an additional

preparatory step was required. The Linux kernel had to be recompiled to

ensure that options required by the mesh networking stack are enabled. This

was a bit challenging since the Jetson modules were mounted on carrier

boards that required non-standard kernels

o [Non issue, but a limitation in the current version of the OS of the Nvidia
Jetson/Xavier device. We expect better support on newer OS versions.].

. [t is advisable to develop a tool that will allow users to assess the state of the
RAINBOW cluster so that they can check whether the installation has
succeeded and whether all components are working as expected with just a
single command to save a considerable amount of time
o [Feature request. Currently users have to check various component for the

status, feature should be part of any commercial solution based on
RAINBOW |.

. Verification of the analytic stack required lots of effort and a bit of
experimentation
o [Feature request. Already included Ul parts along the installation of the

analytics stack for the final release, more improvements could be part of
any commercial solution based on the analytic stack].

Page 13 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Configuration of Service Level Objective and Metrics:

. Extending the dashboard should be done after the project becomes more
widely adopted and it will be possible to determine what SLO definitions are
most frequently used
o [Feature request. A interesting idea for improving the user experience,

feature could be part of any commercial solution based on RAINBOW].

Page 14 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

3 Implementation and Integration Status

In this section, we describe the status of the overall RAINBOW platform for the final
release. To be in this position, we followed the development and integration plan
presented in D5.1 and the feedback received from the physical set up demos to provide a
platform that can be characterized as stable. RAINBOW followed a standard approach to
implement the RAINBOW framework mechanisms by adopting from early on a
continuous process that contained a set of discrete steps that re-assured its high quality.
In specific, the following integration time plan is followed:

First release of First release of Second release of Final release of

WP2-WP4 integrated WP2-WP4 integrated platform, with

components platform components and the improvements based on
integrated platform demonstrators’ feedback

Figure 2 Roadmap for RAINBOW Development

In the following subsections we provide the status for the platform as whole (section 3.1),
and then we proceed to more detailed description of the improvements and updates done
per component. To facilitate the reading process, we separate the various components
per layer; in section 3.2 we present the current state of implementation and integration
of Orchestration layer, in 3.3 we present the components of the Modelling Layer, in
section 3.4 the components of Data Management and Analytics Layer and in section 3.5
we present the edge stack.

3.1 Final Release Overview

Table 1 Overview of Final Release Functionalities

Tool - Service Participants API Specification Codename
Orchestration Layer
Orchestration Lifecycle TUW -UBI- Orchestration.LCM-API

Manager UCY - AUTH

Pre-Deployment TUW - UBI- Orchestration.PDCS-API

Constraint Solver UCY

Logically Centralized TUW Orchestration.LCO-API

Orchestration

Backend Services UBI - Orchestration.BES-API
SUITES

Modeling Layer and Dashboard
Service Graph Editor & SUITE5 - UBI Modelling.SGMGMT-API

Repository - TUW

Analytics Editor SUITE5 - UBI Modelling. ANALEDITOR-API
- UCY - AUTH

Policy Editor & SUITE5 - UBI Modelling. POLICYMGMT-API

Repository - UCY - TUW

Page 15 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

~

RAINBOW

Dashboard

Dissemination Level: PU

SUITES -UBI

Data Management & Analytics Layer

Data Storage and Sharing AUTH-UCY- DataManagement.STORAGE-API
K3Y - SUITES

Analytics Service UCY - SUITE5 DataManagement. ANALYTICS-API
- TUW - AUTH
- UNIS

Edge Stack

Mesh Routing Protocol UBI - IFAT - Edge.MESH-API

Stack DTU - POLITO

Multi-domain Sidecar UBI - UCY - Edge.PROXY-API

Proxy INTRA

Security Enablers POLITO - Edge.SECURITY-API
IFAT- DTU
UBI- K3Y

Storage Agent AUTH - UCY - Edge.STORAGE-API
K3Y - SUITES

Resource and Application UCY - TUW - Edge.MONITORING-API

Monitoring Agent UNIS - K3Y -
AUTH

Analytics Workers Ucy Edge.ANALYTICS-API

Device Management UBI Edge.DEVICEMGMT-API

Control Plane UBI Edge.KUBELET-API

Modelling. DASHMGMT-API

Management Module

3.1.1 Overall Integration and Component Dependencies

The integration status of high-level interfaces between the different RAINBOW
components was reported in previous deliverables. For the final release since all
dependencies have been resolved in previous versions, some final adjustments on APIs
are reported below.

3.2 Orchestration Layer Components

As its name suggests, the orchestration Layer includes all components responsible for the
deployment and orchestration of the applications using RAINBOW. The overall
architecture of this layer remains the same as for the second release of RAINBOW.

3.2.1 Logically Centralized Orchestrator

The RAINBOW Logically Centralized Orchestrator is responsible for managing the
deployment and resources of RAINBOW applications, as well as storing metadata about
them. It receives service graphs that have been deployed by the Backend Services and
provides status information about them.

The RAINBOW Logically Centralized Orchestrator consists of the three loosely coupled
components highlighted in Figure 1, i.e., the Resource Manager, the Deployment Manager,
and the Orchestrator Repository.

Page 16 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

- R
T / Orchestrator

— | Repository
. Peplgv " Create Create
ervice Grap Native Deployments Service Instances
n Native Deployments
DePonment Schedule Service Instances
(Manager on Nodes

Application Lifecycle Managers

i B
Scheduler ~ Node

Resource— | Resource Update
Info Manager ‘ Native
Deploy Deployments
and
Configure
SLO Managers
Monitoring APl ——Metrics—»

E—

Figure 3 Logically Centralized Orchestrator Components and Interactions

Resource/Container Manager

Based on the state-of-the-art analysis and requirements elicitation performed in WP1,
the RAINBOW platform uses Kubernetes as its Resource Manager. Specifically, this
release of RAINBOW is built on top of the vanilla Kubernetes distribution v1.21.

RAINBOW relies on a fixed schema for handling fog specific resources, such as GPS
sensors or cameras, using the extended resources and labels mechanisms provided by
Kubernetes. Non-sharable resources that need to be exclusively assigned to a container,
e.g., a video camera, are represented as extended resources, which allow managing
quantities. Conversely, sharable resources, which may be used by multiple containers
simultaneously, e.g., a GPS sensor, are represented using labels on nodes.

Deployment Manager

The Deployment Manager is implemented as a Kubernetes controller responsible for
service graphs. It also provides the Kubernetes Custom Resource Definition (CRD) [4] for
service graph objects. It is written in Go [5] and relies on scaffolding and the controller
framework provided by kubebuilder [6]. Upon submission of a service graph, the
Deployment Manager creates and/or updates Kubernetes-native deployments and
RAINBOW Service Level Objective (SLO) configurations. Additionally, it provides status
information about the deployments to the Ul through the status subresource of each
service graph.

Page 17 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

~

RAINBOW

This component relies on the Service Graph Editor as Ul and the Backend Services as the
middleware responsible for all the transformation and the communication services and
Kubernetes as the Resource Manager.

The Deployment Manager is able to configure all aspects of an SLO and its elasticity
strategy and adds the ability to provide application-specific configuration properties
through the service graph, which are implemented as Kubernetes ConfigMaps.

Orchestrator Repository

The Orchestrator Repository is divided between a MySQL database, which stores
information about the deployment lifecycle and orchestration process, and an etcd key-
value store, which houses all information relevant for Kubernetes.

APIs and Integration Status

All components of the RAINBOW Logically Centralized Orchestrator depend on the
underlying Kubernetes distribution (vanilla Kubernetes v1.21 for this release of the
RAINBOW platform). Kubernetes must be set up and configured with the RAINBOW Mesh
networking components. Afterwards, the orchestrator components can be deployed and
take their responsibility of creating, modifying, and deleting Kubernetes-native and
RAINBOW-specific resources, based on applications’ service graphs.

In Table 2 we present all interfaces exposed by the component, along with their

descriptions.
Table 2 Public RAINBOW Orchestrator APIs

Method Path Description Used By
GET /apis/vl/namespac Returns a list of all namespaces User and
es registered in the orchestrator Infrastructure
Manager,
Service Graph
Interpreter
GET /apis/vl/namespac Returns the namespace object User and
es/<name> with the specified name Infrastructure
Manager,
Service Graph
Interpreter
POST /apis/vl/namespac Creates a new namespace object User and
es Infrastructure
Manager,
Service Graph
Interpreter
PUT /apis/v1l/namespac Replaces the namespace object User and
es/<name> with the specified name. To be Infrastructure
successful, the resourceVersion Manager,
number in the body must match Service Graph
the current version of the object. Interpreter

Page 18 of 70

Copyright © Rainbow Consortium Partners 2020-2022

~

RAINBOW

Method

DELETE

GET

GET

POST

PUT

DELETE

GET

GET

POST

Path

/apis/v1/namespac
es/<name>

/apis/fogapps.k8s.r
ainbow-h2020.eu
/v1/namespaces/<
namespace>/servic
egraphs
/apis/fogapps.k8s.r
ainbow-h2020.eu
/v1/namespaces/<
namespace>/servic
egraphs/<name>
/apis/fogapps.k8s.r
ainbow-h2020.eu
/v1/namespaces/<
namespace>/servic
egraphs
/apis/fogapps.k8s.r
ainbow-h2020.eu
/v1/namespaces/<
namespace>/servic
egraphs/<name>

/apis/fogapps.k8s.r
ainbow-h2020.eu
/v1/namespaces/<
namespace>/servic
egraphs/<name>
/apis/cluster.k8s.ra
inbow-
h2020.eu/v1/name
spaces/default/net
worklinks
/apis/cluster.k8s.ra
inbow-
h2020.eu/v1/name
spaces/default/net
worklinks/<name>
/apis/cluster.k8s.ra
inbow-
h2020.eu/v1/name
spaces/default/net

Copyright ©

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

Description

Deletes the namespace with the
specified name

Returns a list of all Service
Graphs in the specified
namespace

Returns the Service Graph object
(which includes its deployment
status) with the specified
namespace and name

Creates a new Service Graph
object in the specified
namespace

Replaces the Service Graph object
with the specified namespace and
name. To be successful, the
resourceVersion number in the
body must match the current
version of the object.

Deletes the Service Graph with
the specified namespace and
name.

Returns a list of all Network Link
objects that are part of the cluster
topology graph.

Returns the Network Link object
with the specified name

Creates a new Network Link
object in the cluster topology
graph

Page 19 of 70

Rainbow Consortium Partners 2020-2022

Used By

User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph
Interpreter

User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph
Interpreter
User and
Infrastructure
Manager,
Service Graph

~

RAINBOW

Method Path

worklinks

PUT /apis/cluster.k8s.ra
inbow-

h2020.eu/v1/name
spaces/default/net
worklinks/<name>
DELETE /apis/cluster.k8s.ra
inbow-

h2020.eu/v1/name
spaces/default/net
worklinks/<name>

To get a specific API path, the placeholders <GROUP> and <TYPE> need to be replaced

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

Description

Replaces the Network Link object

Used By

Interpreter

User and

with the specified name in the
cluster topology graph. To be
successful, the resourceVersion
number in the body must match

the current version of the object.

Deletes the Network Link with
the specified name from the
cluster topology graph

Infrastructure
Manager,
Service Graph
Interpreter

User and
Infrastructure
Manager,
Service Graph
Interpreter

with the group and type name values from the list of API types in Table 2.

Object Type
Custom Stream
Sight SLO
Mapping
Network QoS
SLO Mapping
Migration
Elasticity
Strategy
OPC UA Message
Elasticity
Strategy
Horizontal
Elasticity
Strategy
Vertical
Elasticity
Strategy
Kubernetes
Deployment
Kubernetes
StatefulSet
Kubernetes
ConfigMap

Table 3 Internal RAINBOW Orchestrator API Types

Group Type Name Used By
slo.k8s.rainbow customstreams Deployment Manager, SLO
-h2020.eu ightslomapping Policy Managers

S
slo.k8s.rainbow networkqoslom Deployment Manager, SLO
-h2020.eu appings Policy Managers
elasticity.k8s.ra migrationelasti SLO Policy Managers,
inbow- citystrategies Application Lifecycle
h2020.eu Managers
elasticity.k8s.ra opcuamessagee SLO Policy Managers,
inbow- lasticitystrategi Application Lifecycle
h2020.eu es Managers
elasticity.polari horizontalelasti SLO Policy Managers,
s-slo- citystrategies Application Lifecycle
cloud.github.io Managers
elasticity.polari verticalelasticit SLO Policy Managers,
s-slo- ystrategies Application Lifecycle
cloud.github.io Managers
apps deployments Deployment Manager,
Scheduler, Kubernetes
apps statefulsets Deployment Manager,
Scheduler, Kubernetes
core configmaps Deployment Manager,

Page 20 of 70

Deployed Services, Kubernetes

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Object Type Group Type Name Used By
Kubernetes core services Deployment Manager,
Service Kubernetes
Kubernetes networking.k8s ingresses Deployment Manager,
Ingress Config .io Kubernetes

3.2.2 Orchestration Lifecycle Manager

The Orchestration Lifecycle Manager is part of the Orchestration layer and consists of the
three loosely coupled components highlighted in Figure 2, i.e., the Scheduler, the SLO
Policy Managers and the Application Lifecycle Managers.

T / Orchestrator
- Repository

Create \

Deploy
Service Graph

Create
Service Instances

Native Deployments

Native Deployments

DEplovment Schedule Service Instances
Manager on Nodes “

Application Lifecycle Managers

Scheduler |~ MNode

Resource— | Resource Update
Info Manager Native
Deploy Deployments
and n
Configure

SLO Managers

E—

Monitoring APl ——Metrics—»

Figure 4 Orchestration Lifecycle Manager Components and Interactions

Scheduler

The Scheduler assigns each service instance to a node for execution, according to its
requirements and constraints. It is implemented in Go and built on top of the Kubernetes
Scheduling Framework.

The RAINBOW Scheduler plugins enable fog awareness by respecting network Quality of
Service (QoS) constraints/network SLOs and fog optimized resource distribution.

SLO Policy Managers
The SLO Policy Managers monitor the SLO compliance of deployed services and trigger

elasticity strategies upon violations. They are implemented as Kubernetes controllers in
TypeScript using the Polaris framework.

Page 21 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

The RAINBOW platform features a generic SLO controller that can be used to build
custom SLOs, based on multiple metrics, from the Ul

Application Lifecycle Managers

The Application Lifecycle Managers are responsible for managing the service instances
and for executing the elasticity strategies. Service instances management is provided
natively by Kubernetes. The elasticity strategies are implemented in TypeScript using the
Polaris framework.

The RAINBOW platform features a horizontal elasticity strategy, a vertical elasticity
strategy, a migration elasticity strategy to move services from one node to another, and
an elasticity strategy to send messages to [oT devices via OPC UA.

APIs and Integration Status

All components of the RAINBOW Orchestration Lifecycle Manager depend on the
underlying Kubernetes distribution (vanilla Kubernetes v1.21), the CRDs provided by the
components of the RAINBOW Logically Centralized Orchestrator, and its APIs. The
Orchestration Lifecycle Manager does not provide an API on its own.

3.2.3 Pre-deployment Constraint Solver

The Pre-deployment Constraint Solver has two major responsibilities: i) validation of a
submitted service graph against the corresponding CRD schema, which is handled
natively by Kubernetes, and ii) semantic validation of the service graph, e.g., ensuring that
it does not contain any loop, which is performed by a custom Admission Webhook [11].

Originally, the Pre-deployment Constraint Solver was planned to be implemented with
OptaPlanner [12], but this decision was changed at the second release of the RAINBOW
platform, leading to the implementation of the lightweight validation mechanisms
describe above. Since the Scheduler is the component that is responsible for finding a
placement for each service that satisfies its constraints, it solves the constraints
satisfaction problem in an online fashion. The design of the RAINBOW Scheduler ensures,
upon the initial deployment or an application, that either all its services are scheduled or
none at all. Thus, a duplication of this constraint solving logic from the scheduler in the
Pre-deployment Constraint Solver would have provided little additional benefit, while
requiring additional processing time for each service graph.

APIs and Integration Status

The Pre-deployment Constraint Solver depends on the underlying Kubernetes
distribution (vanilla Kubernetes v1.21) and the CRDs provided by the components of the
RAINBOW Logically Centralized Orchestrator. The Pre-deployment Constraint Solver
does not provide a public API but is triggered by the Logically Centralized Orchestrator.

Page 22 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
3.2.4 Backend Services

The Backend Services of the RAINBOW Orchestration layer acts as the link between the
Modelling Layer, the Data Management and Analytics Layer and the Logically Centralized
Orchestration and are responsible for all the underlying communication between those
layers. The structural elements of the Backend Services are the User and Infrastructure
Manager, the Service Graph Interpreter, the Analytics Interpreter and the Policy
Interpreter. The User and Infrastructure Manager are finalised during the latest release
of RAINBOW and no further updates are implemented. On the other hand, and based on
the users feedback, the Service Graph Interpreter, the Analytics Interpreter and the Policy
Interpreter receive some new features and updates.

User and Infrastructure Manager

The User and Infrastructure Manager undertakes two main tasks, the user management
and the infrastructure management. The user management includes all the operations for
users and organizations, such as the registration, authentication, authorization etc. The
infrastructure management is responsible for the registration, authentication and
authorization of the cloud/fog provider.

Service Graph Interpreter

The Service Graph Interpreter is responsible for the interpretation of an abstract service
graph that comes from the Modeling Layer and the delivery to the Logically Centralized
Orchestration. Also, it receives and manages all the status updates from the Logically
Centralized Orchestration and updates accordingly the Modeling Layer. At the final
integration of the RAINBOW platform, we further enhance the service graph in order to
support affinity and anti-affinity rules for the components placement. This feature allows
constraining components placement on the cluster nodes against other components of
the same service graph.

Analytics Interpreter

The Analytics Interpreter receives an analytics query from the Analytics Editor
component of the Modeling layer, interprets it to the query language that is used by the
Data Management and Analytics Layer and forwards the query to that layer. Then
receives back the results from the applied query and interprets them for consumption by
the Modeling Layer. During the final integration we implement a separation on the metric
type that is used in the analytics query between the component specific metrics (i.e cpu
utilisation, ram usage etc) and user custom metrics (i.e frames per second etc) in order
to provide a better user experience. This update does not affect the core functionality of
the Analytics Interpreter, but it requires the update of the interpretation procedure of the
received query into the query language that is used by the Data Management and
Analytics Layer.

Policy Interpreter

Page 23 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

~

RAINBOW

The Policy Interpreter is responsible for the interpretation of the RAINBOW’s Service
Level Objective (SLO) configuration from the Policy Repository component of the
Modeling layer into the service graph that will be sent to the Logically Centralized
Orchestration. The SLOs are part of the service graph object and when a SLO received
from the Policy Interpreter, it interprets it, updates the corresponding service graph
object and sends the updated service graph to the Logically Centralized Orchestration.
During the final integration of the RAINBOW platform, we implement a separation
between the component specific metrics (i.e cpu utilisation, ram usage etc) that is used
by the SLO and the user custom metrics (i.e frames per second etc), similar to the
analytics interpreter update, that is used by the SLO. As in the Analytics Interpreter case,
the core functionality of the Policy Interpreter remains unaffected, but an update is
required in the way that an incoming SLOs will be interpreted by the Policy Interpreter.

APIs and Integration Status

In the table below we present the most important interfaces provided by the Backend
Services Component.

Table 4 APIs for User & Infrastructure Management

Method Path Description Used By
PUT /api/vl/user Updates user’s Operational
information Dashboards
POST /api/v1/user Creates a new user Operational
Dashboards
GET /api/v1/user/{id} Retrieves user’s Operational
information by Id Dashboards
DELETE /api/v1/user/{id} Deletes a user by Id Operational
Dashboards
POST /api/v1/user/list Retrieves all users Operational
Dashboards
GET /api/v1/providertype/{id} Retrieves the cloud/fog Operational
provider type Dashboards
POST /api/v1/providertype/list Retrieves all the Operational
available Dashboards
provider types
PUT /api/v1/provider Updates provider’s Operational
information Dashboards
POST /api/v1/provider Creates a new provider Operational
Dashboards
GET /api/v1/provider/{id} Retrieves provide’s Operational
information by Id Dashboards
DELETE /api/v1/provider/{id} Deletes a provider by Id Operational
Dashboards
GET /api/v1/auth/user Retrieves the Operational
authenticated Dashboards
user
Page 24 of 70

Copyright © Rainbow Consortium Partners 2020-2022

~

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Method Path Description
POST /api/v1l/auth/logout End user’s session/

Method
PUT

POST

GET

DELETE

POST

POST

DELETE

GET

PUT

POST

GET

DELETE

POST

POST

POST

GET

DELETE

Logout the user

Table 5 APIs for Service Graph, Analytics Interpreter and Policies Interpreter

Path Description
/api/v1l/component Updates a component
/api/v1l/component Creates a component

/api/v1l/component/{id} Fetches a component by

id
/api/v1l/component/{id} Deletes a component by

id
/api/v1l/component/list Fetches a list of

components

/api/v1/component/affinities Creates component
affinity rules

/api/v1l/component/affinities/ Delete a component

{id} affinity rules by id
/api/v1l/component/affinities/ Fetches a component
{application_instance_id} affinity rules by a

specific application id
/api/v1/application Updates a Service graph

/api/v1/application Creates a Service graph

Fetches a Service graph
by id

Deletes a Service graph
by id

Undeploys a Service
Graph instance

/api/v1/application/{id}
/api/v1/application/{id}

/api/v1/applicationinstance/{a
pplicationInstancelD}/request/
undeployment
/api/v1/applicationinstance/{a
pplicationInstancelD} /request/
deployment
/api/v1/applicationinstance/{a
pplicationInstancelD}/request/
cancellation
/api/v1/metric/{id}/applicatio

Deploys a Service Graph
instance

Cancel the deployment
of a Service Graph
instance

Retrieves the analytics

ninstance/{applicationlnstancel query results for a

d} specific
query and application
instance

/api/v1/metric/delete/{id} Deletes an analytics
Page 25 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Used By
Operational
Dashboards

Used By
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor

Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor
Service Graph
Editor

Service Graph
Editor

Service Graph
Editor

Analytics
Editor

Analytics

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Method Path Description Used By
query Editor
by Id
POST /api/v1l/metric/create/{applica Create new analytics Analytics
tionInstanceld} query for a specific Editor
application instance
POST /api/v1/metric/applicationinst Retrieves all analytics Analytics
ance/{applicationlnstanceld}/li queries for a specific Editor
st application
instance id
GET /api/v1/metric/applicationinst Retrieves all the Analytics
ance/{applicationlnstanceld}/c available Editor
omponentnode/{componentNo metrics for a specific
deHexID}/metrics application instance and
a

specific component
POST /api/v1/elasticity/create/{appl Create a new elasticity = Policy Editor

icationInstanceld} policy for a specific
application instance

GET /api/v1/elasticity/applicationi = Retrieves a specific Policy Editor
nstance/{applicationlnstanceld elasticity policy for a
}/slo/{slold} specific application

PUT /api/v1/elasticity/applicationi Updates a specific Policy Editor
nstance/{applicationInstanceld elasticity policy for a
}/slo/{slold} specific application

DELETE /api/v1/elasticity/applicationi Deletes a specific Policy Editor
nstance/{applicationlnstanceld elasticity policy for a
}/slo/{slold} specific application

POST /api/v1l/elasticity/applicationi Fetches a list of Policy Editor
nstance/{applicationInstanceld elasticity policies for a
}/list specific application

More details about this API are provided in the GitLab repository of RAINBOW using
the OpenAPI standard.

3.3 Modeling Layer and Dashboard Components
3.3.1 Service Graph Editor & Analytics Editor

The Service Graph Editor & Analytics Editor are implemented as part of the Ul and belong
to the modeling layer of the RAINBOW’s architecture. The Service Graph Editor &
Analytics Editor is composed of two main parts, the first part (Service Graph Editor) is
responsible for the authoring and maintaining of the application templates of cloud-
native components along with the maintenance of the deployment operation. The second
part (Analytics Editor) is responsible for the monitoring of the deployed cloud-native
components. During the previous releases of RAINBOW, the core functionality of this

Page 26 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

component has been finalised and fully integrated with the rest of the RAINBOW
components, but during this final integration of the RAINBOW platform, based also on
our use-cases feedback, we added some new features and updates.

At the Service Graph Editor, we added a new feature where the users can create affinity
and anti-affinity rules. This feature, as depicted in Figure 4 and Figure 5 below, enables
the placement of the service graph component in cluster nodes against other components
of the service graph based on the user’s affinity or anti-affinity rules.

newApplnstance

Select Provides

Rainbow Kubernetes v

Ena

able
Enable

End-To-End Encrypted IPv6 Communication
Soc on each component Node Instance

WordPress64

&
Po

MariaDB31
»

&,

phpMyAdmin53

&
&

Figure 5 Affinity/Anti-affinity rules button

Set the Pod Affinity

Figure 6 Create an affinity rule

At the Analytics Editor we updated the editor to create a separation on the metric type
that is used in the analytics query between the component specific metrics (i.e., CPU
utilisation, ram usage etc) and user custom metrics (i.e., frames per second etc) in order
to provide a better user experience. The core functionality remains as was in the previous
release, the only change is a radio button in the editor as shown in Figure 7.

Page 27 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

VRAINBOW

analyties » Creste

Analytics | Create

Expressions

Figure 7 Analytics Editor update

3.3.2 Policy Editor

The Policy editor is a component of the Modelling layer that is responsible to apply
instructions/guidelines regarding how the overall application should behave prior to
deployment and during runtime. These instructions are addressed as SLOs and when
created by the user, are sent to the Policy Interpreter for the interpretation and further
processing of the RAINBOW platform. The Policy Editor was finalised and fully integrated
during the previous release, as far as concerns the final integration the core functionality
remains as was and only a minor update took place on the editor. That update concerns
the separation of the metrics that are used in the SLOs in component specific metrics (i.e.,
CPU utilisation, ram usage etc) and user custom metrics (i.e., frames per second etc). The
new functionality is highlighted in the Figure 7 below.

A RAINBOW

> 5.0 » Create

SLO | Create

Metrics

Figure 8 Policy Editor update

APIs and Integration Status

Page 28 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

~

RAINBOW

This component depends on the Data Storage and Sharing component to fetch the
deployment’s exposed metrics and the Logically Centralized Orchestrator to fetch the
deployments and save the policies, which are then sent to the appropriate RAINBOW
component.

3.4 Data Management & Analytics Layer Components
3.4.1 Data Storage and Sharing

The Data Storage and Sharing component of the Data Management & Analytics Layer is
the main storage unit for the monitoring metrics and any other metadata needed by the
RAINBOW components, transparent to the end-user. The component includes two main
services for data exchange and more specifically the extraction and ingestion services.
Both are available with different variations behind a REST API that is stable since the
previous platform release.

The Data Storage and Sharing component also includes a data placement service that
replaces the default data replication algorithms of the underline distributed database
framework, i.e., Apache Ignite. The data placement algorithm works in the background to
replicate data from one storage instance to another in order to reduce extraction latency
and data availability. For the final release of the RAINBOW platform, the data placement
algorithm has been finalized and evaluated in a real-world scenario.

Table 6 APIs for Data Storage & Sharing

Method Path Description Used By
POST /nodes Returns the list of active Analytics Service
storage instances with their
hostnames and their type of
instance.
POST /put Ingestion of monitoring data. = Resource & Application-
level Monitoring Agent
POST /get Returns monitoring data with Analytics Service, Policy
their values. Editor, Backend Services
POST /query Returns an aggregated value Analytics Service, Policy
from the monitoring data. Editor, Backend Services
POST /list Returns a list of the monitoring Analytics Service
metadata.
DELETE /monitoring Deletes the specified Resource & Application-
monitoring data. level Monitoring Agent
POST /analytics/put Ingestion of analytics data. Analytics Service
POST /analytics/get Returns analytics data with Analytics Service, Policy
their values. Editor, Backend Services
DELETE /analytics Deletes the specified analytics Analytics Service
data.
POST /app/put Ingestion of timestamped data Analytics Service

(main-memory).

Page 29 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Method Path Description Used By
POST /app/get Returns timestamped data Analytics Service, Policy
with their values. Editor, Backend Services
DELETE /app Deletes the specified Analytics Service

timestamped data.

3.4.2 Analytics Service

The RAINBOW Analytics Service is a part of the Data Management & Analytics layer that
helps with data processing for the RAINBOW ecosystem. It allows for real-time analysis
of a large amount of data collected from the underlying fog resources and performance
indicators from IoT applications. The service is designed to be distributed, meaning that
data processing happens where the data is generated, so that analysis can be done quickly
with low latency and without the data leaving the network of collaborating fog nodes. It
is built on Apache Storm and includes scheduling algorithms that optimize streaming
analytic queries and take into account unique factors such as energy consumption,
latency, and data quality in the many locations where [oT applications are deployed.

The RAINBOW Analytics Service has three core components, namely the Analytics
Enabler, the declarative analytic queries, and the Analytics Workers. The Analytics
Enabler is the Orchestration Service that manipulates the distributed processing
environment and orchestrates the execution of the analytic tasks. The latter service
materialized by the Apache Storm, but we also extended it with novel Fog-enabled
scheduling algorithms. The Analytic Stack accepts declarative queries written in
StreamSight [cite] language, and StreamSight translates these queries into executables
and deploys them on the underlying execution engine (Apache Storm). Finally, the
Analytics Workers perform the analytic duties of the submitted jobs and are deployed on
the fog nodes that the user has allocated for the deployment.

The interactions and coordination actions between the Analytic Workers and the
Analytics Enabler are handled by the Apache Storm cluster. The other components of the
RAINBOW communicate with the Analytics Enabler by performing HTTP rest API calls.
Specifically, we provided a detailed list of the possible API calls that the components can
perform.

In the table below we present the most important interfaces provided by the Analytics
Services. We should mention that for the retrieval of monitoring data and for storing
generated insights, Analytics Services utilize the Data Storage and Sharing Services.

Table 7 APIs for Analytics Service

Method Path Description Used By
GET /api/insight Returns the status of the job that Logically Centarized
s/{deployme has the given {deployment_id}. Orchestration,
nt_id} Analytics Editor
Page 30 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Method Path Description Used By
POST /api/insight = Submits the job with an id equal to Logically Centarized
s/{deployme {deployment_id}. The latter id will = Orchestration,
nt_id} be used to collect its status with Analytics Editor
the appropriate GET request. This
API requires as a body the
StreamSight queries the user
wants the job to execute.

PUT /api/insight Submits the job with an id equal to Logically Centarized
s/{deployme {deployment_id}. The latter id will = Orchestration,
nt_id} be used to collect its status with Analytics Editor

the appropriate GET request. This
API requires as a body the
StreamSight queries the user
wants the job to execute.
DELETE /api/insight Deletes the job that has the given Logically Centarized
s/{deployme {deployment_id}. Orchestration,
nt_id} Analytics Editor

3.5 RAINBOW Edge Stack Components
3.5.1 Device Management

When a device is onboarded on a cluster its capabilities are advertised in the logical
centralized orchestrator. Such capabilities include (indicatively) the existence of TPM
(for security reasons), the existence of special sensors/actuators etc. The API of the
device management component that is installed each device being onboarded is

summarized in the table below.
Table 8 APIs for Mesh Routing Protocol Stack

Method Path Description Used By
GET /device/capabilities A read-only method that Logically
provides the summary of Centarized
the device capabilities Orchestration
PUT /device/reboot A put method that forces Logically
the device to reboot Centarized
Orchestration
GET /device/status A read-only method that Logically
fetches the connectivity Centarized
status of the device Orchestration

3.5.2 Control Plane Management Module

Upon a successful onboarding to the mesh environment, an IoT node must join a K8S
cluster. This functionality is encapsulated under the family of kubelet-related methods as
depicted below. These methods are triggered by the Logically Centralized Orchestration

Page 31 0f 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

to commission and decommission the physical node to the cluster. The entire
communication is performed using the [Pv6 overlay network that is being setup based on

the secure mesh routing protocol stack as analysed in the next section.
Table 9 APIs for Mesh Routing Protocol Stack

Method Path Description Used By
POST /kubelet/connec A method that forces a node to Logically
t attach to a logical centralized k8s Centarized
master Orchestration
DELETE /kubelet/discon A method that forces a node to Logically
nect disconnect from a k8s master Centarized
Orchestration
GET /kubelet/status A method that reports the node’s Logically
connectivity status Centarized
Orchestration

3.5.3 Secure Mesh Routing protocol stack

The purpose of the Secure Mesh Routing stack is to establish and maintain a network of
edge nodes which will be used for control-plane and data-plane signaling. Hence, the
stack provides the node with secure-layer-3 connectivity to an existing mesh topology
without having to statically configure its IP address or the IP address of one of its adjacent
nodes and automate the process of binding to a ‘logically centralized’ Kubernetes cluster.
In general, a Mesh network is a type of network where each node in the network may act as
an independent (peer) router, regardless of whether it is connected to another network or
not.

In a mesh environment network addresses are not statically configured since the risk of
conflictis high. Therefore, plain IP assignment protocols cannot work. Hence it is the purpose
of the Mesh Protocol Stack to a) Define automatically an address within minimum chance
of collision; b) Use this address to join a peer-to-peer network with “limited access”
since the existing trusted network has to attest the new node; c) Execute the attestation
protocol in order to be accepted in a security-overlay; d) Take partin the selection process
of a cluster-representative (cluster-head) which will be used to offload several
computational tasks.

The following tables summarizes the exposed API methods of the respective components

that are grouped by.
Table 10 APIs for Mesh Routing Protocol Stack

Method Path Description Used By

PUT /mesh/alterc A method that forces the node to Logically
onnectmode/ change the layer-2 connectivity mode. Centarized
{modeid} The possible modes are BLIND, or Orchestration

ATTESTATION_BASED
POST /mesh/joinm A method that attempts to join a node Logically

esh/{meshid} in an existing formulated cluster Centarized
based on the MODEID Orchestration

Page 32 of 70

Copyright © Rainbow Consortium Partners 2020-2022

~

RAINBOW

Method Path
DELETE /mesh/leave

GET

GET

GET

GET

GET

PUT

GET

mesh/{meshi
d}
/mesh/looku
p/{nodeid}

/mesh/neigh
borhood

/mesh/nodei
d

/mesh/public
key

/mesh/routin
gtable

/mesh/setgat
eway/{gatew
ayid}

/mesh/status

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

Description
A method that forces a node to leave a
cluster unconditionally

A method that performs DHT lookup
to check if a node exists in the
formulated topology

A method that exposes the first degree
of connections for a connected node

A method that returns the descriptor
of anode. The descriptor has all types
of information regarding connectivity
A method that retrieves the public key
of the k8s paster

A method that fetches a consolidated
version of the routing states

A method that announces (in a
broadcast mode) the new gateway to
the cluster

A method that reports the mesh-
related connectivity state

3.5.4 Multi-domain sidecar proxy

Each node that participates in the k8s cluster can host a containerized application. These
applications can be controlled by a transparent proxy that can be installed on top of the
exposed ports. This stands true in case ports expose HTTP and RPC services. In
RAINBOW, the open source ‘envoy’ component has been utilized. Its low level API is
exposed in the following link: https://www.envoyproxy.io/docs/envoy/latest/api/api.

However, RAINBOW has the obligation to preconfigure the proxy during the deployment
process. As such, the high-level API calls that are exposed for such configurations is

provided below.

Method Path

POST

PUT

/sidecar/apply/{nodeid}
/{componentid}

/sidecar/remove/{nodei
d}/{componentid}

Used By
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration

Table 11 APIs for Mesh Routing Protocol Stack

Description

A method that configures
an envoy proxy on top of
an existing component

A method that removes an
envoy proxy on top of an
existing component

Page 33 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Used By
Logically
Centarized
Orchestration
Logically
Centarized
Orchestration

https://www.envoyproxy.io/docs/envoy/latest/api/api

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
3.5.5 Storage Agent & Storage Coordination

The APIs related to the Storage agent are presented in section 3.4.2.
3.5.6 Analytics Worker & Analytics Coordination

The APIs related to the Storage agent are presented in section 3.4.2.

3.5.7 Resource & Application-level Monitoring Agent

A Monitoring Agent is enabled on every cluster node, in order to capture Fog-node system
metrics like resource utilization, and metrics from the containerized services. To do that,
the Monitoring Agent enables probes that are provided by the platform. Moreover, users
can expose other metrics by creating new probes extending the Probe interface of the
RAINBOW monitoring SDK. Moreover, the monitoring SDK provides functions for
application-level metrics extraction, thus users can enable this functionality and the
system automatically disseminates metrics to the Monitoring Agent. Through that, users
can view and interact with performance data in a single unified environment instead of
dealing with different monitoring tools.

__________ RAINBOW MESH STACK
Viakoy Container
il H
i ; ! :E Monitoring| _ (Monitorin
I rvi ! :
" Service e Agent [€] Conrigs Other RAINBOW
! User's Libraries ! (Services
.|: : "one-off"
!
! Monitoring . query | Orchestrator | -
2 Probe
::: ¢ Library : g
o I ! Dashboard
s
Native c-grsuﬁsl- | s >
Monitoring w w ¥y ?
|TDocker Metric | Probe () 'fvr:/al)::'cs ™ An:—l?gtl'cs
| Socket ‘ orker A yti
N ool SO ;
' Probe () continucus| Service
’ Operating System query

Figure 9 Monitoring Agent overview

All monitoring data is exported by the Monitoring Agent to the local Storage Agent so that
users can query for both real-time data and historical data persistently stored across the
Storage Fabric created on top of the overlay mesh network interconnecting the user’s fog
nodes. The Monitoring Agent exports all monitoring data to the local Storage Agent,
allowing users to query for both real-time and historical data that is persistently stored
via the Storage Fabric built on top of the overlay mesh network that connects the user's
fog nodes.

We should note that the monitoring agent exposes the monitored metrics to the storage,
so do not receive any direct API request from the RAINBOW components. However, the
RAINBOW monitoring SDK communicates with the Agent in order to publish the app-
level metrics.

Page 34 of 70

Copyright © Rainbow Consortium Partners 2020-2022

~

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
Table 12 APIs for Monitoring Agent
Method | Path Description Used By
POST /metrics/ | This API call is exposed by the monitoring | User’s application

agent and the MonitoringSDK library can | via

disseminate application-level metrics MonitoringSDK

3.5.8 Security Enablers

For amesh node to join a cluster a ‘verification” process has to take place. The verification
process is initiated by the Logical Centralized Orchestrator and is addressed as
attestation. In the jargon of attestation, the initiator is addressed as Verifier and the entity
that is being validated in addressed as prover. The communication among the verifier and
the prover is addressed as attestation protocol. The protocol relies on the fact that initial
integrity measures (a.k.a. golden hashes) are collected ‘offline’.
During runtime, the mesh admission control protocol is requesting the execution of the
formal attestation protocol prior to assigning a cryptographic key and an IPv6 address
that will be used for the control plane signalling. The API calls that materialize the
attestation process is the following:

Method
POST

POST

Path
/attestat
ion/trig
ger

/{nodei
d}
/attestat
ion/
respons
e

Table 13 APIs for Mesh Routing Protocol Stack

Description

Logically Centarized Orchestration acting as a
Verifier calls this endpoint to initiate the
attestation process by providing a random
nonce generated and signed by the Verifier
(challenge). After the signature verification, the
attestation component returns the triggers
internally the attestation process via the
Attestation Controller providing the same
nonce, the signature of the Verifier and the type
of service to be invoked.

This endpoint is triggered by the Prover via the
control plane to provide the attestation
response. In the case of Attestation by Quote a
quoted message signed by the AK is returned
from the Attestation Controller to the Local
Control and Management Framework and
finally to the Logically Centralized Orchestrator
(Verifier) to verify the signature and the quote
with the stored golden hashes. In the case of
Attestation by Proof a signature with the AK is
returned through the same path to the Verifier
to verify the signature representing the correct
state of the devices.

Page 35 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Used By
Logically
Centarized
Orchestrati
on

Logically
Centarized
Orchestrati
on

—

RAINBOW

Method
PUT

Path
/{nodei
d}
/attestat
ion/
TRashVa
lu

es

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

Description

The method sends a list of hash values (golden
hashes stored in the Measurements Database)
representing the trusted configuration of the
binaries that are known to be correct. This
represents the correct state that needs to be
considered in the CIV process and is
immediately followed by the creation of the
Attestation Key (AK) binded to the new
expected state as a trusted reference value.

Page 36 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Used By
Logically
Centarized
Orchestrati
on

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

4. RAINBOW Platform Installation

For the final release of RAINBOW, we further enhance the installation procedure in order
to include all the RAINBOW components, provide more advanced configuration options
and an easy-to-use installation guide for the whole platform. All the installation
instructions are available online and continuously updated based on the users’ feedback
in a ReadTheDocs page, at https://rainbow-h2020.readthedocs.io.

For the purpose of document completeness, in the following subsections we will provide
the complete installation instructions.

4.1. Prerequisites

RAINBOW supports a wide variety of Linux capable devices (VMs, Raspberry pi,
wearables, drones etc) and the most widespread distributions such as Ubuntu and
Debian.

In the previous release of RAINBOW, we provided the installation instructions and
prerequisites for the core platform components, in this release we also developed an
automated procedure for the Dashboard component that needs a separate node (Bare
metal or VM) to operate. For that reason, we separate the prerequisites into the core
components prerequisites and the Dashboard prerequisites.

For the core platform components, the minimum execution requirements are at least 4
CPU cores, 8GB of RAM, 40GB of storage and x86 based CPU architecture for the master
node and 2 CPU cores, 2GB of RAM, 20 GB of storage and either x86 or ARM based CPU
architecture for the worker nodes. For more advanced use cases we propose a master
node with at least 4 CPU cores and 16GB of RAM and worker nodes with 2 CPU cores and
4GB of RAM. Moreover, RAINBOW supports GPU enabled devices, as also most of the
devices which register under the /dev Linux path

For the Dashboard component the minimum execution requirements are 2 CPU cores,
4GB of RAM, 20 GB of storage and x86 based CPU architecture.

4.2. RAINBOW Platform Setup

Compared to the second release of RAINBOW we logically divided the installation
procedure into three main stages. The first stage is the core platform setup and consists
of the docker engine, the Mesh Network, the Kubernetes cluster and the Rainbow
components such as the Logically Centralized Orchestrator along with the Orchestration
Lifecycle Manager and their subcomponents. The second stage is the Analytics Stack
setup which consists of the Monitoring, Data Storage and Analytic Services components
and the third stage is the Dashboard setup which consists of the Dashboard component.
All the installation scripts along with instructions are also gathered in a public accessible
GitLab repository, at https://gitlab.com /rainbow-projectl /rainbow-installation.

Page 37 of 70

Copyright © Rainbow Consortium Partners 2020-2022

https://rainbow-h2020.readthedocs.io/
https://gitlab.com/rainbow-project1/rainbow-installation

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

main v rainbow-installation / installation-scripts + v History Find file Web IDE v & v
Name Last commit Last update

} calico.yaml a tallation script files 0 montk
& cjdns.txt ad tallat t file mont!

coreDnsDeployment.json ; tallatior pt file ntt
init-02-cjdns.sh feat: a dashboard 6 months ago

& init-03-cjdns-ipv6.py add installatic pt file montt

init-03-cjdns-worker.py add installation script files 0 months ago

& init-04-configure-host.py) tallat file ntt

5] init-05-docker-debian.sh add installatic ript files 10 months

3 init-05-docker-ubuntu.sh a tallatio t file mont!

7 init-06-docker-configure.sh ad tallatic ript file montk

(3 init-07-k8s-debian.sh add ing update step af iding the kuberne 6 montt
init-07-k8s-ubuntu.sh a t tic pt file montt
init-08-k8s-master.sh add installatior t file ontt

& init-09-k8s-master-configure.py ad lat pt file ntt

3 init-10-install-rainbow-orchestrator.sh adi stallation script files 0 months ago

& init-11-cjdns-master-credentials.py) tallat t file montt

. init-12-k8s-join-master.py add installation script file 0 month:

{-} k8s-init-config-ipv6.yaml ad t t file ntt

3] rainbow-v3-master.sh feat jate tallatior ts 2 hour

3 rainbow-v3-worker.sh feat late mai tallation scripts 2 hours ago

Figure 10 Core platform installation scripts

The first step of the first stage is the setup and configuration of the cluster’s master node
that can be achieved by the execution of the rainbow-v3-master.sh script, as depicted in
Figure 10. The only configuration that is required by the user is to provide the necessary
docker credentials for the containerized components. So, in order to achieve this the user
needs to edit the rainbow-v3-master.sh by setting the corresponding docker variables at
the beginning of the script and then just execute it.

$sudo ./rainbow-v3-master.sh

The installation procedure consists of the setup and configuration of the docker engine,
the prerequisites of the Mesh Network along with the Mesh Network itself, the
Kubernetes Master node and finally the Rainbow components such as the Logically
Centralized Orchestrator along with the Orchestration Lifecycle Manager and their
subcomponents. After the successful execution of the script it will provide an
accomplishment message along with necessary information for the next steps. In case of
a failed execution the script will stop the procedure and will display the error that
occurred.

Page 38 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

The second step of the first stage is the setup and configuration of the cluster’s worker
nodes that can be achieved by the execution of the rainbow-v3-worker.sh script, as
depicted in Figure 10, at each one of the worker nodes. In this case the user needs to
configure the script with the values that are printed after the successful execution of the
master’s node script. To accomplish this the user needs to open the rainbow-v3-worker.sh
script and set the corresponding variables at the beginning of the script and then just
execute it.

$sudo ./rainbow-v3-worker.sh

There are some special occasions in some devices, where the official linux kernel had
some flags disabled and the Mesh Network was not able to work properly. In RAINBOW
we have addressed that issue and concluded in some pre-configuration steps which
downloads the source code of the kernel, enables the necessary flags, recompiles the
source code and then instals the new kernel. Since that procedure can cause a lot of issues
and need extra attention by the user, we do not offer it as an automated script. All the
aforementioned steps are offered as analytic instructions in the form of a Readme file in
the public GitLab repository, at https://gitlab.com/rainbow-projectl/rainbow-
installation/-/tree/main/xavier-device and as a special section on the ReadTheDocs
page, at https://rainbow-
h2020.readthedocs.io/en/latest/UsageGuide/a rainbow platform installation.html#sp

ecial-case.

Name Last commit Last update
Eastorm update configurations and docker-composes of analytic and mo... 4 months ago

env ntroduce more detailed configurations 4 months ago
{-} docker-compose.yaml update configurations and docker-composes of analytic and mo... 4 months ago

Figure 11 Analytics Stack master node installation files

The second stage is the installation of the Analytics stack with the first step to be the
installation and configuration on the master node. For that step the user needs to
configure the variables of the .env file, which is depicted in Figure 11. Those variables
along with their description are shown in the Table 8 below.

Table 14 Analytic Stack master node installation variables

NODE_IPV6 Node's IPV6

NODE_IPV4 Node's IPV4

PROVIDER _HOSTS The IPs of the nodes that the system will retrieve its
data (all nodes’ ips)

NODE_HOSTNAME Node's hostname/ip

STORM_NIMBUS_CONFIG_FILE The path of Storm Nimbus configuration file
Page 39 of 70

Copyright © Rainbow Consortium Partners 2020-2022

https://gitlab.com/rainbow-project1/rainbow-installation/-/tree/main/xavier-device
https://gitlab.com/rainbow-project1/rainbow-installation/-/tree/main/xavier-device
https://rainbow-h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#special-case
https://rainbow-h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#special-case
https://rainbow-h2020.readthedocs.io/en/latest/UsageGuide/a_rainbow_platform_installation.html#special-case

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
STORAGE_PLACEMENT Enables and disables the placement algorithm of the
storage. Default is False.
STORAGE_DATA_FOLDER The folder that the data of the Storage component

will be stored persistently

After the variables configuration the user needs just to execute the docker-compose up
command.

$docker-compose up -d

The Analytics Stack includes the Apache Storm and Nimbus. Generally, the configuration
of Nimbus needs no alteration. However, users can update the provided files from the
aforementioned repositories accordingly. Furthermore, users can also add other
configurations of Storm Framework
(https://storm.apache.org/releases/current/Configuration.html). Finally, users can
introduce other scheduling strategies (including RAINBOW'’s strategies) via the provided
configuration file. For instance, if users set storm.scheduler equals to
ResourceAwareScheduler and its strategy to be EnergyAwareStrategy, the execution will
try to minimize the energy consumption. The following Figure 12 depicts a
representative RAINBOW-enabled Nimbus configuration file.

storm.zookeeper.servers:

- "cluster-head-IP" # update with master's
nimbus.seeds: ["cluster-head-IP"] # update with master's IPv4
storm.log.dir: "/logs"
storm.local.dir: "/data"
storm.local.hostname: "cluster-head-IP" # update with master's IPv4
supervisor.slots.ports:

- 6700

- 6701

- B7082

- 67083
nimbus.thrift.max buffer size: 20480000
supervisor.thrift.max buffer size: 204800800
topology.component.cpu.pcore.percent: 1000.0
topology.component. resources.onheap.memory.mb: 512.0
storm.scheduler: "org.apache.storm.scheduler.resource.ResourceAwareScheduler"
topology.scheduler.strategy: "eu.rainbowh2028.Schedulers.EnergyAwareStrategy"

Figure 12 Analytics Scheduler Configuration File

Name Last commit Last update
Eastorm feat: update README.md and add analytic-stack 5 months ago

.env ntroduce more detailed configurations 4 months ago
{-} docker-compose-arm32.yaml| fixes on data mngm node compose files 1 month ago
{-} docker-compose-armé4.yaml fixes on data mngm node compose files 1 month ago
{-} docker-compose.yaml fixes on data mngm node compose files 1 month ago

Figure 13 Analytics Stack worker node installation files

Page 40 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

The second step of that stage is the Analytics stack step on the worker nodes. The
procedure is similar to the previous step but in that case the user needs to configure the
variables of the .env file that are presented and described at Table 9.

Table 15 Analytic Stack worker node installation variables

MONITORING_CONFIGURATION_FILE The path of monitoring agent
configuration file

STORAGE_RAINBOW_HEAD Cluster head's [IPV4/IPV6

STORAGE _NODE NAME Node's hostname

STORAGE_PLACEMENT Enables and disables the placement
algorithm of the storage. Default is False.

STORAGE_DATA_FOLDER The folder that the data of the Storage

component will be stored persistently

Furthermore, users can (optionally) configure the parameters of the monitoring agent by
providing its configuration file. By default, the RAINBOW monitoring agent captures all
utilization metrics from the underlying node and the containerized services (as described
in Deliverable D3.2). Through the configuration file, users can enable or disable specific
metrics, and apply adaptive monitoring and dissemination techniques in order to
minimize the monitoring metrics' size and the monitoring computational footprint. The
following image highlights a representative configuration file of the monitoring
configurations.

node id: "node id" #

sensing-units:
general-periodicity: 1s
DefaultMonitoring:
periodicity: 1s
disabled-groups:
= %d15k"
metric-groups:

- name: “memory*
periodicity: 15s
name: "cpu”

UserDefinedMetrics:
periodicity: 1s
sources:

~ oy

ContainerMetrics

periodicity: 1s

dissemination-units: #
IgniteExporter:
hostname: ignite-server
port: 56000

adaptivity:
sensing:
DockerProbe:
target name: demo test|cpu ptc
minimum periodicity: 1
maximum periodicity: 15
confidence: 0.95
dissemination:
all:
minimum periodicity: 1
maximum periodicity: 15
confidence: 0.95
metric id: #
minimum periodicity: 5s
maximum periodicity: 35s
confidence: 95

Figure 14 Monitoring configuration file

Page 41 0f 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

After the variables configuration the user needs just to execute the docker-compose up
command on each one of the cluster’s worker nodes. It is necessary to mention that, as
depicted in Figure 15, there are different docker-compose files in order to support the
different architectures of the worker nodes. So, for x86 based CPU architecture, the user
needs to execute.

$docker-compose up -d
For 32-bit ARM based CPU architecture, the user needs to execute.

$docker-compose up -f docker-compose-arm32.yaml -d

For 64-bit ARM based CPU architecture, the user needs to execute.

$docker-compose up -f docker-compose-armé64.yaml -d

Name Last commit Last update
env feat: rainbow metric exporter 2 months ago
M+ README.md feat: dashboard script fixes 4 months ago
5 qjdns.txt feat: add dashboard 5 months ago
{-} docker-compose.yaml feat: rainbow metric exporter 2 months ago
init-02-cjdns.sh feat: add dashboard 5 months ago
@ init-03-cjdns-ipv6.py feat: dashboard script fixes 4 months ago
@ init-03-cjdns-workerpy feat: add dashboard 5 months ago
@ init-04-configure-host.py feat: add dashboard 5 months ago
init-05-docker-debian.sh feat: add dashboard 5 months ago
init-05-docker-ubuntu.sh feat: add dashboard 5 months ago
init-06-docker-configure.sh feat: add dashboard 5 months ago
init-13-docker-compose.sh feat: add dashboard 5 months ago
rainbow-dashboard.sh feat: dashboard script fixes 4 months ago

Figure 15 Dashboard installation scripts

The third and final stage of the RAINBOW installation procedure is the Dashboard
component setup. The first step includes the configuration and execution of the rainbow-
dashboard.sh script which is shown in Figure 15. The user needs to configure the script
with the values that are printed after the successful execution of the master’s node script
(first step of the first stage). To achieve this the user needs to open the rainbow-

Page 42 of 70

Copyright © Rainbow Consortium Partners 2020-2022

https://gitlab.com/rainbow-project1/rainbow-installation/-/blob/main/analytic-stack/nodes/docker-compose-arm32.yaml
https://gitlab.com/rainbow-project1/rainbow-installation/-/blob/main/analytic-stack/nodes/docker-compose-arm32.yaml

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

dashboard.sh script and set the corresponding variables at the beginning of the script and
then just execute it.

$sudo ./rainbow-dashboard.sh

The final step of that stage and of the whole installation procedure is the configuration of
the .env file with just the values of the local IP address and a path to a folder for the
persistent volume data. Then the user simply needs to execute the docker-compose up
command.

$docker-compose up -d
Following the instructions, users are installing the three main parts for utilizing
RAINBOW; a) the central part of the RAINBOW platform, b) the Logically Centralized
Orchestrator and the Data Analytics in the Kubernetes Master of the Kubernetes cluster

to be used, and c) the fog node.

Below we provide the deployment diagrams for the different parts of the platform.

Rainbow Platform L2
Phpmyadmin Rainbow database Metric exporter Ul theme Ul backend
8036 3306 9080 80 8080
Q|
Logically Centralized Orchestrator

Kubernetes Master ‘

Rainbow storage Analytics Controller/Enabler Rainbow Orchestrator Zookeeper Storm master
50000 5000 8443 2181 6627 |
o

Fog Node
Storm supervizor Security Enablers Rainbow storage Rainbow monitoring
6700-3 8083 8082 19999
Page 43 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

5. RAINBOW Usage Guide

The Dashboard is the RAINBOW's user interface where the on boarding to the platform
begins with the deployment and management of user applications through a user friendly
and easy to use interface. The complete instructions of the user interface are available
online and continuously updated in a ReadTheDocs page, at https://rainbow-
h2020.readthedocs.io.

In this section, for the sake of clarity of the reader, we will present some of the basic parts
of Dashboard usage that had already been presented in previous releases along with
some of the core updates that were implemented on the final release.

The first step for a user is to login to the RAINBOW platform by providing her/his
credentials, as depicted in Figure 16.

A RAINBOW

Figure 16 Login page of the RAINBOW Dashboard

Page 44 of 70

Copyright © Rainbow Consortium Partners 2020-2022

https://rainbow-h2020.readthedocs.io/
https://rainbow-h2020.readthedocs.io/

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

The landing page of RAINBOW is the main Dashboard view where an overview of the
available resources along with monitoring information about the deployed applications
are presented, Figure 17.

{FARAINBOW

e

Dashboard
[rmen | Qverview
Pt [— Py [—

UBIDELL 1240 m a0

Figure 17 Main page of the RAINBOW Dashboard

The user is provided with a list of all the available components, as also she/he can create
a new or edit an existing component by configuring the desired fields as shown in the
indicative Figures 18 and 19 below.

fEYRAINBOW ®

Components

Name

Identitier Name ~ Organization Visibilty Date Crested

Figure 18 Components' list

Page 45 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

fAYRAINBOW @

Co Create
Components | Create

Distribution Parameters

Docker Image *

Docker Credentials

Use private Docher registry (Username. Password fields)

Docker Username

Doeker Password

Custom Ducker Registry

(Public) I this option is checked, anyone could see this component

Figure 19 Component configuration

After the component’s definition, the user can graphically create the application topology
through the Service Graph editor, as depicted in Figure 20.

(Public) If this option is checked, anyane could see this Applicatior

Interface: mariaDBSQLInterface
Search a candidste comgponent

MariaDB31
-

phpMyAdmin53

Figure 20 Application creation

Page 46 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

All the created applications can be viewed as a list on the corresponding view (Figure 21).

fAYRAINBOW)
Applications
o
Identifier Name v ‘Organization Visibility Date Created

Figure 21 Applications’ list

For deploying an application, a user must register the appropriate resources, as depicted
in Figure 22.

MO\ RAINBOW

Resour > Ednt
Resources | Edit

3 Select this rezource as default

E’;mﬂ %
Figure 22 Resource creation

Page 47 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

To deploy an application, a user must create an instance from the available applications
as shown in the Figure 23 below.

fAVRAINBOW @m

Applications

Ientter Hame Omgznon s Dot Cremes

Figure 23 Application Instance creation

In the Application Instance service graph editor, a user can select the desired resource
and edit the components configuration as depicted in the following Figures 24 and 25.

newAppinstance

Select Provides

Rainbow Kubernetes -

Enable End-To-End Encrypled IPv6é Communication

Enable Soc on each component Node Instance

eployment affinity

1]
WordPress64
L 4
L
MariaDB31
»
&
phpMyAdmin53
&
&

Figure 24 Application Instance service graph editor

Page 48 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Configure "WordPress" Component
ID: 2q38qa19dg

Environmental Variables

Key Value
wordpress
Key Value
AManaDB
Key Value
wordpress
i '_(\’\T:’\
ol

Figure 25 Application Instance service graph editor - Component editing

A new feature in the final release of RAINBOW is the ability to set affinity and anti-affinity

rules for the application components through the service graph editor (Figure 26 and
Figure 27)

newAppinstance

Select Provider

Rainbow Kubernetes v

Enable End-To-End Encrypted IPv6 Communication
Enable Soc on each component Node Instance

Deployment affinity

WordPress64
_— _C.OJ
MariaDE31

»

&,

o pHpMyAdmin53

R
e

Figure 26 Application Instance service graph editor - affinity/anti-affinity

Page 49 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Set the Pod Affinity

Retated companents

PhoMyAdmINS3 x X v

Figure 27 Application Instance service graph editor - set affinity rules

After the successful deployment of an application, it can be found at the list of the
Application Instances page (Figure 28).

fMARAINBOW ®m

Application Instances

sterar Hame bearien Name (Hex St Date reated

Figure 28 Application Instances list

Page 5o of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

Correspondingly, after the deployment of an application the user can monitor it through
the live service graph by viewing logs and metrics, as shown in Figure 29 and Figure 30

below.

(15 .%

Figure 29 Service graph monitoring - part 1

CPU Usage RAM Usage Disk Usage

Disk (GB)

AM

Time e

Figure 30 Service graph monitoring - part 2

Page 51 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

Likewise, a user can define analytics and elasticity policies on a successful deployed
application by using the dedicated editors (Figure 31).

fFARAINBOW @m

Application Instances

lsemiter Name Apgpiicati Name (Hex 0] st Dt Creates

Figure 31Analytics and SLO Editor

A user is able to create the desired analytics by using the editor, as shown in Figure 32
and Figure 33 below.
A\ RAINBOW ®

Instances > Analytics > Create

Analytics | Create

n o u

General Y

Name *

analytic_test

Select Type *

Stream v

Figure 32 Creation of a new analytic

Page 52 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

Figure 33 Adding expressions on the analytic

SLOs are added through the SLO editor and depicted in Figure 34 to 37. In the Figure 34
user provide the basic info of an SLO, such as the component it should be applied or the
strategy to be used.

f\RAINBOW

Instances > SLO > Create

SLO | Create

General

Name *

mySlo

Select Elasticity Strategy *

VerticalElasticityStrategy

Select Target Component *

rainbow-network-monitoring391

Figure 34 Creation of a new SLO

In Figure 35 the user specifies the metrics to be used.

Page 53 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

{ARAINBOW

es > 5L0 > Create

SLO | Create

Metrics

Metric Type *
& Component Custom

Name *

Window Time *
0]

e B

Figure 35 Add metrics in the SLO

Then the computations of the SLO are defined, as seen in Figure 36.

fAVRAINBOW

Instances > SLO » Create

SLO | Create

Computations

Figure 36 Add Computations to the SLO

Finally, the expressions tab is used to define the target values for the SLO, as seen in
Figure 37

Page 54 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

f\RAINBOW

» 5.0 » Create

SLO | Create

Expressions
Computation *
my_cpu_computation
Target Vakue *
50
Tolerance *
Higher is better
[oo oo

Figure 37 Add Expressions to the SLO

After the creation of the policy, the defined elasticity strategy will be applied when the
SLO is violated.

Page 55 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

6. Technical Evaluation and Quality Assurance

This section summarises the work performed resulting to the RAINBOW’s final release,
in terms of the development and integration process followed, the software quality
assessment process, and the testing procedures.

6.1. Continuous Integration and Quality Assurance
In previous versions of this deliverable, we presented the methodology and activities
performed by the integration team in relation to Continuous Integration and Quality

Assurance of the developed platform. This section provides a summary of this process,
focusing on the tools used during this time frame to enable the CI part of RAINBOW.

6.1.1. Version Control System - Gitlab

RAINBOW has used Gitlab as the primary VCS system. The Gitlab group that has been
created and hosts all components’ repositories is depicted in Figure 38.

R RAINBOW project@ 0+ || New subgroup
ip ID: 9222487 [Leave group
Subgroups and projects Shared projects Archived projects Q Updated v ¥
R rainbow-analytics & *
Ij R rainbow-orchestration @J * 2
@ R rainbow-attestation & *
@ R rainbow-storage & *
a R r»air:b?\fl-‘sc»r\e‘d.uleirn@ e *
) R rainbow-monitoring & *
(0 R Rainbow Installation & *
(0 D Documentation & *
) R RAINBOW backend services (3 *
(@ R rainbow-edge-stack (3 * 0

1R rambow-m»(egrénan‘r: *

Figure 38 RAINBOW’s Gitlab group and repositories

[t is worth noting that based on the annotation of RAINBOW components as open source
or not in the IPR repository, the corresponding sub-groups were made available to the
public considering the corresponding license, as shown in the figure above.

6.1.2 Container Registry

Concerning the distribution of components, RAINBOW continues to use the same
approach by using docker registry. This registry is hosted in the project’s GitLab group,
as depicted in the figure below. Since the last version three more images were added
related to orchestration and network monitoring.

Page 56 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

RAINEOW project » Container Registry

Container Registry

< 16 Image repositories

Filter results ‘ Q | Updated v | 1=

«=+| rainbow-integration/opcua-message-estrat-controller [

= 2 Tags

-=+| rainbow-integration/rainbow-network-monitoring [

= 1Tag

«=+| rainbow-integration/storm [f}

= 2 Tags

+=+| rainbow-integration/migration-estrat-controller [%}

= 2 Tags

«++| rainbow-integration/image-throughput-slo-controller [

= 2 Tags

+=+| rainbow-integration/rainbow-orchestrator (3}

= 4 Tags

+++| rainbow-integration/rainbow-storage [

=13 Tags

+=+| rainbow-integration/arm64va/redis [7}

= 3 Tags

«++| rainbow-integration/custom-stream-sight-slo-controller [}

=1Tag

+=+| rainbow-integration/rainbow-scheduler [7}

= 2 Tags

< Prev | Next>

Figure 39 RAINBOW container images

6.1.3 Issue Tracking - Gitlab

RAINBOW project continued to use GitLab Issues for issue/bug tracking toolset. The
GitLab issues of the RAINBOW Project are located at
https://gitlab.com/groups/rainbow-projectl/-/issues (see Figure 40). To this point, all
of 138 issues raised have been closed. Last but not least, open access to issues is provided
to the public for components that have been commented as such.

Page 57 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

INE 1 Issues
Open 0 Closed 138 All 138 DEER=R Select project to create issue
Q | | Closed date v | I7

StreamSight Storm Connector CLOSED

[w] bow-projectl/rainbow-analytics#1 - created 2 years ago by dtrihinas i 1month

StreamSight ignite Data Ingestion CLOSED

D bow-projectlfrainbow-analytics#2 - created 2 years ago by dtrihinas i 1month ago

StreamSight Scheduling CLOSED

O rainbow-projectlrainbow-analytics#3 - created 2 years ago by dtrihinas closed 1month

[RAINBOW-B80] Publish Message Elasticity Strategy CLOSED 331

D rainbow-projectl/rainbow hestration#1 created 1 r ago by Thomas Pusztai th

[RAINBOW-17] Update NetworkLinks with monitoring data CLOSED ®

O reinbow-projecti/rainbow-orchestration#51 - created 1 year ago by Thomas Pusztai ([EEETEEERREETE] i th ago

[RAINBOW-20] Network QoS SLO & Elasticity Strategy CLOSED =
projecti/raint estration#54 - created 1 year ago by Thomas Pusztai -import::RAINBOW-1 ed 2 month

[RAINBOW-80] One instance per Node Type SLO (UC3) CLOSED

O rainbow-projectl/rainbow iestration#109 ated 1 year ago by Thomas Pusztai losed 2 month

[RAINBOW-101] Final SLOs and fine tuning for UC1 CLOSED

O rainbow-projecti/rainbow nestration#114 - created 11 months ago by Thomas Pusztai { 1 2 mont

[RAINBOW-100] Event Detection and Power Consumption SLO - final version (UC2) CLOSED

O rainbow-projectl/rainbow-orchestration#113 - crea mor ago by Thomas Pusztai losed 2 mont!

[RAINBOW-5] NetworkLink CRD Admission Webhook CLOSED = M1

D rainbow-projectl/rainbow-orchestration#39 - created 1 year ago by Thomas Pusztai sed 2 month

[RAINBOW-31] Service Graph Admission (pre deploy constraints solver) CLOSED @ Ry

IO rainbow-projectl/rainbow-orchestration#65 - created 1year ago by Thomas Pusztai (IEETECONERE] sed 2 montt

[RAINBOW-94] NetworkQoS Migration Elasticity Strategy for moving pods to better connected nodes CLOSED

O rainbow-projectlrainbow-orchestration#112 - created 1 year ago by Thomas Pusztai closed 3 mont

[RAINBOW-59] SLOC Runtime Unit Tests CLOSED = M1

O rainbow-projecti/rainbow-orchestration#93 - created 1 year ago by Thomas Pusztai closed 3 montt

[RAINBOW-65] Service Graph Unit Tests CLOSED @1

O rainbow-projectirainbow-orchestration#97 - created 1 year ago by Thomas Pusztai il

Figure 40 RAINBOW issues

6.1.4 Software Quality Evaluation

SonarQube was mainly used for the software quality evaluation part of the platform, as
part of the CI process of the project while partners for privacy reasons were allowed to
host and maintain their own code quality tool setup and make regular quality evaluation
over the code. The latest results are presented below.

6.1.5 Continuous Integration Flow

For RAINBOW project, a dedicated Kubernetes group runner has been utilized in order
to handle all the CI/CD jobs of the project. The stages included in RAINBOW were (i) build,
(ii) package, (iii) analyze and (iv) prepare while the necessary images were used

appropriately in each stage. Figure 41 below depicts the CI flow of Rainbow UI backend
that involves all the aforementioned stages, with each stage containing a job. The detailed

Page 58 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

approach that was relevant till the end of the project can be found in deliverables D5.1,
5.2 and 5.3.

I9 Norelated merge requests found

Pipeline tieed

Prepare Package Analyze Build

Q

) ~ - :
(%) prepare_job le] (%) maven-pack.. | (V) analyzesonar ([() docker-buil...

Figure 41 RAINBOW's CI flow

6.2. Testing Procedures of the RAINBOW Final Release

For the development and integration of the final release of RAINBOW, the consortium To
deliver a stable final version of RAINBOW, the consortium used Unit tests and integration
tests that ensure the proper functioning of the integrated platform. In this section, we
collect the results related to unit and integration testing as performed for this final stage.

6.3. Unit Testing

Unit tests are the tool to test the functional modules of the developed software. Therefore,
the developer of each component needs to test the components utilizing unit tests before
integrating them into the complete application. These unit tests will run in parallel with
the integration testing.

The results of the tests are provided in the Annex I: Unit Tests for Final Release.

6.4. Integration Testing

Integration testing has the purpose of assuring the proper functionality of the
interconnected components. For the previous releases of the integrated platform, we
utilized manually executed tests and collected the results to ensure the proper
functionality. These tests covered in D6.3 included the following:

e Testing of Service Graph Deployment (IT_01).

e Testing of the scheduling of pods to be deployed on nodes (IT_02).

e Testing of SLO controller is able to check the status of the deployment and trigger
actions in case of any violation (IT_03).

Page 59 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

e Testing the proper counteractions are provided by Elasticity Strategy Controller

and applied to the deployment (IT_04).

While these tests are still successfully executed, for this final release have also used the
ReadyAPI platform! that allows the creation and execution of tests based though the
usage of the RAINBOW components’ REST calls. The REST calls tested usually refer to
functionalities from a single component, but we combine the calls as part of a testing

single scenario, thus ensuring the proper function of the integrated components.

Also, as OpenAPI standard has been used in for documenting the APIS of RAINBOW
components, we able to use the available API calls in ReadyAPI allowing the faster

creation of the tests.

For creating tests, we use the calls we need to test as part of a scenario, provide the

required input for each of them, as depicted in Figure 42.
Test Step Create

osT tt ! Tapwliprovider

Request Generate Welues

Requast | Raw Outline Form

Media Typa acobcationfison = [@ [Post QuaryString

fpEs e
fpublickey®
‘orivatekey” i
*dewair

SELRVE L LS LOpNSUL Fb 2d D0k FESDR BV BoWR: oid J ZDg AL OVMEM - (05w

bddzeKgvd2ImdUEy VoI ath RN S ULTL LR TGRJ <

ert ot
lertialsihange” : false,
o=t false=,

i

"PFainbow Kubsrnetes®

B Auth Omharit From Parent) Attachments (0] Headers (1)

fssertions | Log [1]

* &

& Pass Walld HTTF Status Codes

Figure 42 Defining request parameters of a REST call

Lhttps://smartbear.com/product/ready-api/overview/

Page 60 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Respor

pFrame
Cache-
pe-cante
-Fra<;'ni
|Expiras
#statu
L]
Conten
Date

Head

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

For creation of a test, it is important to define the assertions that are used to check if the
test has been successfully executed, as depicted in Figure 43.

Test Step Deployment Request
POST apivl fapplicationinstance/{applicationinstancelD) frequest/deployment

Response

Request Raw Outline Form XML JSON HTML Raw Outline | Overview

2 o [z =

164
phpMyAdmin
imvep8bmf

hpMyAdminA

dia Type aoolicationfison v =

@ Auth (inhert From Parent) Attachments (0) Headers (1) Headers (11)

Assertions = Log (0)

© pass Valid HTTP Retus Codes

Figure 43 Defining assertions based on the expected response of a REST call

With this approach a total of 4 complex scenarios have been defined, each of them
consisting of multiple steps. The scenarios are depicted in Figure 44 below.

Page 61 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

RAINBOW

= I Rainbow

&-APls

“-Functional Tests
L‘—}== Authentication
Ilv" User Login
BB #1 Scenario Resources
!}v" Creakte Resource
!}V’ Validate Resource
l}v’ Delete Resource

C--@m #2 Scenario Components

av' Create Component
!}v" Update Wordpress
I'IV’ Delete Components
£ BB #3 Scenario Applications
Hv" Create Component
nv Create Application
!}v" Delete Application
I'IV’ Delete Components

BB #4 Scenario Instances
Hv" Create Resource
!}V’ Validate Resource
!}v" Create Component
!}V" Create Application
av' Cet Application
Hv" Create Instance
!}V’ Delete Instance
!}v" Delete Application
Hv" Delete Components
nv’ Delete Resource

Figure 44 Overview of integration tests in ReadyAPI

With the test scenarios defined, the execution the whole test suite is an easy and
replicable task, that we executed regularly to ensure the proper function of the platform.

The results are also provided below in Figure 45 and Figure 46.

Page 62 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

Authentication
PENEZQRAT

== Test casaes: 1

Usar Login

#1 Scenaric Resources

FoaRNEz®AD T

+ T@st cases: 3

Creata Resource

validate Resource

Dalats Resaurca

#2 Scenario Components
FGEECBED

+ Tast cases: 3

Create Compaonent

Update Wordpress

Dalate Componants

#3 Scenario Applications
FPRERZORD

+ Test cases: 4

Create Component

Create Application

Delete Application

Delete Companents

Figure 45 Integration test results (part 1)

Page 63 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU
RAINBOW

#4 Seenario Instances
PEEMZIBRD

+ Test cages: 10

Create Resource

w Pa
validate Resource

w PASE
Create Component

~ F

Create dpplication

Get application

Create Instamce

Deleta Instance

Delete Application

Delete Components

Ueleta Rasource

Figure 46 Integration test results (part 2)

Page 64 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW

7. Conclusions

This deliverable summarized the efforts made under WP5 to deliver the final version of
an open RAINBOW platform built to enable the management of scalable, diverse, and
secure IoT services and cross-cloud applications, thereby enabling industries, around
manufacturing, transportation and critical infrastructure to reap the benefits associated
with RAINBOW's advanced technologies. This version is considered mature as the final
release is a platform of a TRL 7.

Part of this document described the process and work performed concerning the
platform evolution from the second to its current version based on a series of
improvements implemented in various areas of the platform but mainly in the frontend
stack technologies. This came as a result of the feedback collected and lessons learnt from
the demos second round realised in WP6.

This document also acts as a handbook for technical information related to the
integration of different components depicted in the reference architecture and developed
in the technical Work Packages, so as to support any interested partner in the further
evolution of the platform. In the same way, RAINBOW prepared and presented in this
document installation instructions that allow a seamless installation and use of the
platform to alocal environment, including the underlying requirements, deployment and
configuration of different elements of the platform.

Finally, the RAINBOW platform has been technically evaluated carrying out integration
tests and scenarios, to ensure requirements are met using tools like ReadyAPI to test
functionalities, security, scalability, and load aspects for the most important and
computationally heavy parts of the platform inside RAINBOW’s CICD pipeline.

Page 65 of 70

Copyright © Rainbow Consortium Partners 2020-2022

Project No 871403 (RAINBOW)
5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release

Date: 30.01.2023
Dissemination Level: PU

RAINBOW
References

[1].
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGEL
0G-1.21.md#v1210

[2]. https://golang.org/

[3].https://github.com/kubernetes-sigs /kubebuilder

[4].Rainbow Container Registry: https://gitlab.com/rainbow-projectl/rainbow-
integration/container registry

5].Kubectrl tool: https://kubernetes.io /docs/tasks /tools/#kubectl

6].https://kubernetes.io/docs/concepts/scheduling-eviction/schedulingframework/

[
[
[7]-https://slocloud.github.io
[

8].https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-
controllers/

9].https://www.optaplanner.org/

—_
o
I-—I

https://gitlab.com/groups/rainbow-projectl/-/container registries
D1.2: RAINBOW Reference Architecture

D2.2: RAINBOW Collective Attestation Policy Enablers Design

D2.3: RAINBOW Collective Attestation & Runtime Verification - Version 1
D2.6: RAINBOW Secure Overlay Mesh Network - Final Version

D3.2: RAINBOW Orchestration Mechanisms

R R e
BOwW N

—_
@)
I-—l

D4.2: Data Management Services

[EnN
~
I-—l

D5.1: Technical Integration and Testing Plan

D5.2: RAINBOW Integrated Platform and Unified Dashboard - Early Release

D5.3: RAINBOW Integrated Platform and Unified Dashboard - Second Release
D6.3: RAINBOW Human-Robot Collaboration Demonstrator - Final Demonstrator
D6.5: RAINBOW Digital Transformation of Urban Mobility - Final Demonstrator

= M~ M~ ™~ I~~~ ~~ ~~~ ~~ - - ~~- ~ "~ &~
N N R [
_ o O © Ul
e — — — e

N
\S}
—

D6.7: RAINBOW Power Line Surveillance Demonstrator - Final Demonstrator

Page 66 of 70

Copyright © Rainbow Consortium Partners 2020-2022

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.21.md#v1210
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.21.md#v1210
https://github.com/kubernetes-sigs/kubebuilder
https://gitlab.com/rainbow-project1/rainbow-integration/container_registry
https://gitlab.com/rainbow-project1/rainbow-integration/container_registry
https://kubernetes.io/docs/tasks/tools/#kubectl
https://kubernetes.io/docs/concepts/scheduling-eviction/schedulingframework/
https://slocloud.github.io/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://www.optaplanner.org/
https://gitlab.com/groups/rainbow-project1/-/container_registries

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

—

RAINBOW

Annex I: Unit Tests for Final Release

Name
Description

Reference Code

Scale out/in through the Horizontal Elasticity Strategy

This test submits a Horizontal Elasticity Strategy CRD that is
supposed to trigger a scale out/scale in and checks if the
scaling operation is performed accordingly.

UT_ 05

Responsibilitie = Implementation: TUW

s

Component Orchestration Lifecycle Manager - Application Lifecycle
Manager

Input Horizontal Elasticity Strategy CRD instance

Output Updated Scale sub-resource of the deployment object

Status Implemented with Jest

Name ServiceGraph Scheduler Plugin

Description This test triggers the ServiceGraph plugin of the RAINBOW

Reference Code

Kubernetes scheduler and ensures that it loads the Service
Graph of the application that the current pod belongs to.
UT 06

Responsibilitie Implementation: TUW

S

Component Orchestration Lifecycle Manager - Scheduler

Input The pod to be scheduled and its service graph

Output The correct Service Graph should be available in the pod’s
scheduling context

Status Implemented with the Go testing package

Name NetworkQoS Scheduler Filter Plugin

Description This test triggers the NetworkQoS Filter plugin of the

Reference Code

RAINBOW Kubernetes scheduler and ensures that cluster
nodes that do not meet the pod’s requirements are filtered out.
UT 07

Responsibilitie Implementation: TUW
S
Component Orchestration Lifecycle Manager - Scheduler
Input Set of cluster nodes, the cluster topology graph, the pod to be
scheduled, and a Service Graph
Output List of nodes that satisfy the network QoS requirements.
Status Implemented with the Go testing package
Name SLO Control Loop
Page 67 of 70

Copyright © Rainbow Consortium Partners 2020-2022

—

RAINBOW

Description

Reference Code
Responsibilitie
S

Component
Input

Output

Status

Name
Description

Reference Code
Responsibilitie
S

Component
Input

Output

Status

Name
Description

Reference Code
Responsibilitie
S

Component
Input

Output

Status

Name
Description

Reference Code

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

This test ensures that the SLO Control Loop periodically
executes all active SLOs and that it handles errors within an
SLO properly.

UT_08

Implementation: TUW

Orchestration Lifecycle Manager - SLO Policy Managers

Set of configured SLO instances

Every SLO should be evaluated once per evaluation interval
and errors in one SLO should not prevent other SLOs from
being evaluated

Implemented with Jest

Watch Manager

This test configures the Watch Manager to observe instances
of a particular SLO Mapping CRD and ensures that
additions/changes/deletions of a CRD instance trigger the
correct event handlers.

UT_09

Implementation: TUW

Orchestration Lifecycle Manager - SLO Policy Managers
SLO Mapping Type and respective CRD instances
Method calls to the registered event handlers
Implemented with Jest

Transformation Service

This test ensures that the Transformation Service used for
converting between Kubernetes resources and SLO Controller
resource instances transforms the objects properly.

UT 10

Implementation: TUW

Orchestration Lifecycle Manager — SLO Policy Managers
Kubernetes CRDs and SLO Controller Objects

The transformed SLO Controller objects or Kubernetes CRDs
respectively

Implemented with Jest

Custom StreamSight SLO Controller

This test triggers evaluations the Custom StreamSight SLO,
with input causing it to report SLO fulfilment, SLO violation
with more resources needed, and SLO violation with fewer
resources needed.

UT 11

Page 68 of 70

Copyright © Rainbow Consortium Partners 2020-2022

—

RAINBOW

Responsibilitie
S

Component
Input

Output

Status

Name
Description

Reference Code
Responsibilitie
S

Component
Input

Output

Status

Name
Description

Reference Code
Responsibilitie
S

Component
Input

Output
Status

Name
Description

Reference Code
Responsibilitie
S

Component
Input

Output
Status

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

Implementation: TUW

Orchestration Lifecycle Manager - SLO Policy Managers

SLO Mapping and CPU monitoring data

A Horizontal Elasticity Strategy CRD that reflects the
compliance state of the SLO

Implemented with Jest

Service Graph Validation

This test submits a valid and an invalid Service Graph
(containing a loop) to the orchestrator to ensure that only the
valid Service Graph is admitted.

UT 43

Implementation: TUW

Pre-deployment Constraint Solver

Service Graph (YAML)

Admission of Service Graph success or error response code
Implemented with the Go testing package

NetworkQoS Scheduler Score Plugin

This test triggers the NetworkQoS Score plugin of the
RAINBOW Kubernetes scheduler and ensures that cluster
nodes that have lower latency and bandwidth variances
receive a better score.

UT 44

Implementation: TUW

Orchestration Lifecycle Manager - Scheduler

Set of cluster nodes, the cluster topology graph, the pod to be
scheduled, and a Service Graph

List of scores for nodes

Implemented with the Go testing package

AtomicDeployment Scheduler Permit Plugin

This test triggers the AtomicDeployment Permit plugin of the
RAINBOW Kubernetes scheduler and ensures that all pods of
a service graph are admitted all at once or not at all.

UT 45

Implementation: TUW

Orchestration Lifecycle Manager - Scheduler
Set of cluster nodes, the cluster topology graph, the pods to be
scheduled, and a Service Graph

Implemented with the Go testing package

Page 69 of 70

Copyright © Rainbow Consortium Partners 2020-2022

~

RAINBOW

Name
Description

Reference Code
Responsibilitie
S

Component

Input
Output
Status

Name
Description

Reference Code
Responsibilitie
S

Component

Input
Output
Status

Project No 871403 (RAINBOW)

5.4 RAINBOW Integrated Platform and Unified Dashboard - Final Release
Date: 30.01.2023

Dissemination Level: PU

Vertical Elasticity Strategy

This test triggers the Vertical Elasticity Strategy in both
directions, i.e.,, scale up and scale down, and ensures that the
deployment resources are updated correctly.

UT 46

Implementation: TUW

Orchestration Lifecycle Manager - Application Lifecycle
Managers

Vertical Elasticity Strategy CRD instance

Changes to the Kubernetes deployment objects

Implemented with Jest

Migration Elasticity Strategy

This test triggers the Migration Elasticity Strategy in both
directions, i.e., from base location to alternate location and
back again and ensures that the deployments are updated
correctly.

UT 47

Implementation: TUW

Orchestration Lifecycle Manager - Application Lifecycle
Managers

Migration Elasticity Strategy CRD instance

Changes to the Kubernetes deployment objects

Implemented with Jest

Page 70 of 70

Copyright © Rainbow Consortium Partners 2020-2022

	1. Introduction
	1.1 Document Purpose and Scope
	1.2 Relationship with RAINBOW Deliverables
	1.3 Structure of the deliverable

	2. RAINBOW Integrated Platform Architecture
	2.1 Conceptual architecture updates
	2.2 Technical feedback from the 2nd platform release usage and demonstrators
	2.2.1 Human Robot Collaboration Demonstrator
	2.2.2. Digital Transformation of Urban Mobility Demonstrator
	2.2.3. Power Line Surveillance Demonstrator

	3 Implementation and Integration Status
	3.1 Final Release Overview
	3.1.1 Overall Integration and Component Dependencies

	3.2 Orchestration Layer Components
	3.2.1 Logically Centralized Orchestrator
	3.2.2 Orchestration Lifecycle Manager
	3.2.3 Pre-deployment Constraint Solver
	3.2.4 Backend Services

	3.3 Modeling Layer and Dashboard Components
	3.3.1 Service Graph Editor & Analytics Editor
	3.3.2 Policy Editor

	3.4 Data Management & Analytics Layer Components
	3.4.1 Data Storage and Sharing
	3.4.2 Analytics Service

	3.5 RAINBOW Edge Stack Components
	3.5.1 Device Management
	3.5.2 Control Plane Management Module
	3.5.3 Secure Mesh Routing protocol stack
	3.5.4 Multi-domain sidecar proxy
	3.5.5 Storage Agent & Storage Coordination
	3.5.6 Analytics Worker & Analytics Coordination
	3.5.7 Resource & Application-level Monitoring Agent
	3.5.8 Security Enablers

	4. RAINBOW Platform Installation
	4.1. Prerequisites
	4.2. RAINBOW Platform Setup

	5. RAINBOW Usage Guide
	6. Technical Evaluation and Quality Assurance
	6.1. Continuous Integration and Quality Assurance
	6.1.1. Version Control System – Gitlab
	6.1.2 Container Registry
	6.1.3 Issue Tracking – Gitlab
	6.1.4 Software Quality Evaluation
	6.1.5 Continuous Integration Flow

	6.2. Testing Procedures of the RAINBOW Final Release
	6.3. Unit Testing
	6.4. Integration Testing

	7. Conclusions
	References
	Annex I: Unit Tests for Final Release

