

The work described in this document has been conducted within the project RAINBOW. This project has received
funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the Grant
Agreement no 871403. This document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.

Project Title AN OPEN, TRUSTED FOG COMPUTING PLATFORM FACILITATING THE
DEPLOYMENT, ORCHESTRATION AND MANAGEMENT OF SCALABLE,
HETEROGENEOUS AND SECURE IOT SERVICES AND CROSS-CLOUD
APPS

Project Acronym RAINBOW

Grant Agreement No 871403

Instrument Research and Innovation action

Call / Topic H2020-ICT-2019-2020 /

Cloud Computing

Start Date of Project 01/01/2020

Duration of Project 36 months

D2.2 – RAINBOW Collective Attestation Policy Enablers
Design

Work Package WP2 – Security and Trust for Fog and Cross-Cloud Services

Lead Author (Org) Thanassis Giannetsos (DTU)

Contributing
Author(s) (Org)

Heini Bergsson Debes, Benjamin Larsen (DTU)

Panagiotis Gouvas, Konstantinos Theodosiou (UBITECH)

Ronald Toegl, Raphael Schermann (IFAT)

Due Date 31/12/2020

Actual Date of
Submission 15/02/2021

Version V1.0

 Project No 871403 (RAINBOW)

 D2.2 – RAINBOW Collective Attestation Policy Enablers Design

 Date: 15/02/2021

 Dissemination Level: PU

Copyright © Rainbow Consortium Partners 2020

Dissemination Level

X PU: Public (*on-line platform)

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 871403 (RAINBOW)

 D2.2 – RAINBOW Collective Attestation Policy Enablers Design

 Date: 15/02/2021

 Dissemination Level: PU

Copyright © Rainbow Consortium Partners 2020

Versioning and contribution history

Version Date Author Notes

0.1 01.09.2020 Thanassis Giannetsos (DTU) Table of Contents and
partner contribution
assignment

0.2 30.09.2020 Ronald Toegl (IFAT) Updated version

0.3 15.01.2021 Ronal Toegl, Raphael Schermann (IFAT) Content for Chapters 2, 5
and parts of Chapter 7

0.4 20.01.2021 Panagiotis Gouvas, Konstantinos Theodosiou
(UBITECH)

Content for Chapter 6

0.5 22.01.2021 Thanassis Giannetsos, Heini Bergsson Debes,
Benjamin Larsen (DTU)

Content for Chapters 1, 3,
4 and finalization of
Chapter 7

0.6 30.01.2021 First Internal Review

0.8 05.02.2021 Thanassis Giannetsos (DTU) Addressing Review
Comments, added
Conclusions

1.0 15.02.2021 Thanassis Giannetsos (DTU) Finalized Content

Disclaimer

This document contains material and information that is proprietary and confidential to the RAINBOW
Consortium and may not be copied, reproduced or modified in whole or in part for any purpose without
the prior written consent of the RAINBOW Consortium

Despite the material and information contained in this document is considered to be precise and accurate,
neither the Project Coordinator, nor any partner of the RAINBOW Consortium nor any individual acting on
behalf of any of the partners of the RAINBOW Consortium make any warranty or representation
whatsoever, express or implied, with respect to the use of the material, information, method or process
disclosed in this document, including merchantability and fitness for a particular purpose or that such use
does not infringe or interfere with privately owned rights.

In addition, neither the Project Coordinator, nor any partner of the RAINBOW Consortium nor any
individual acting on behalf of any of the partners of the RAINBOW Consortium shall be liable for any direct,
indirect or consequential loss, damage, claim or expense arising out of or in connection with any
information, material, advice, inaccuracy or omission contained in this document.

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Executive Summary

Deliverable D2.2 provides the RAINBOW security, privacy and trust extensions enhanced with
secure remote attestation capabilities for verifying the configurational attestation policies
and properties as well as Direct Anonymous Attestation for privacy-preserving and accountable
services. More specifically, it presents a new set of attestation protocols for supporting trust aware
service graph chains with verifiable evidence on the integrity assurance and correctness of the
comprised fog nodes. It is the first step towards the provision of a secure overlay mesh network
for delivering the high-level functionalities related to secure (edge and mesh) device iden-
tification and integrity, data integrity and confidentiality, anonymity and resource integrity
as described in the overall framework reference architecture (see Deliverable D1.2 [21]).

In order to support enhanced system and network trust assurance, RAINBOW has defined
the security protocols that are necessary for providing a range of secure attestation services
in order to support verifiable evidence on the correct configuration state and/or execution
of a remote platform; ranging from secure boot to run-time integrity referring to the entire life-
cycle of the platform. Two enablers of trust are of interest towards protecting and proving the
authenticity and integrity of fog nodes. Whereas integrity provides evidence about correctness,
authenticity provides evidence of provenance.

As part of the overall RAINBOW attestation toolkit, the main goal is to allow the creation of
privacy- and trust-aware service graph chains (managed by the Orchestration Lifecycle Man-
ager and estabslished by the RAINBOW Deployment Manager) through the provision of zero-
touch configuration functionalities: fog nodes, wishing to join a fog cluster, adhere to the
compiled attestation policies by providing verifiable evidence on their configuration integrity and
correctness. In other words, the framework should provide guarantees that a node will be able to
join a network (and participate in the underlying dynamic routing scheme as well as the privacy-
preserving key management process) if and only if it can prove to the Orchestrator (Orc) that it is
at a “correct state” - without, however, theOrc needing to know the node’s state beforehand. This
allows RAINBOW to support the secure enrollment and integration of heterogeneous devices and
platform equipped with different computing resources and operating systems.

In terms of design, as will also be described in the following sections, the focus of RAINBOW
Enhanced Remote Attestation is on cloud-native component (denote as virtual function, VF) In-
tegrity Verification and on secure enrolment. Integrity verification is the process by which a
fog node (i.e., hosting a VF) can report in a trusted way (at any requested time) the current status
of its configuration. It entails the provision of integrity measurements and guarantees during both
the deployment and operation of a VF; covering the system integrity at the deployment phase
by the RAINBOW Orchestrator but also ensuring the integrity of the loaded components during
their run-time execution.

RAINBOW D2.2 PU Page II

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Contents

List of Figures V

List of Tables VI

1 Introduction 2
1.1 Scope and Purpose . 3
1.2 Relation to other WPs and Deliverables . 3
1.3 Deliverable Structure . 3

2 Hardening the Fog/Edge IoT Stack: Intertrustability of System Composability 5
2.1 Secure Remote Device Management . 5

2.1.1 Towards Decentralized Roots-of-Trust . 5
2.1.2 Rainbow Hardware Security Anchor: Trusted Platform Module 7
2.1.3 Rainbow Software: Trusted Platform Module as a Building Block 8

2.2 RAINBOW Security Asset Management Services 11
2.3 Solidifying a System’s Integrity: Inter-Trustability of Internal Configuration Properties 12

3 RAINBOW Zero Touch Configuration: Integrating Trust Extensions into Fog/Edge
Secure Enrollment 14
3.1 System Model . 15
3.2 High-Level Overview . 17
3.3 RAINBOW Zero-Touch Integrity Verification Building Blocks 18
3.4 Experimental Performance Evaluation . 21

3.4.1 Timings and Benchmarks . 23

4 Privacy-aware Service Graph Chains using RAINBOW Direct Anonymous Attesta-
tion 26
4.1 The Need for “Privacy-by-Design” In Fog-based Ecosystems 27
4.2 Direct Anonymous Attestation Building Blocks . 28
4.3 RAINBOW DAA Scheme . 30

4.3.1 Fog Node Registration . 30
4.3.2 Anonymous Credentials Creation . 32
4.3.3 Network Communication . 32
4.3.4 Revocation . 33

4.4 TPM Commands Instantiation & State Diagrams 33
4.4.1 TPM Commands Mapping to RAINBOW DAA 36

RAINBOW D2.2 PU Page III

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

5 Anonymous Secure Channel Establishment 39
5.1 On Using TLS keys: Benefits are Real, but so Are Drawbacks 39
5.2 Key Exchange with Anonymous Authentication 40
5.3 Research plan for Establishing Ephemeral Keys with Diffie-Hellman Key Agree-

ment Protocol . 40

6 Integration of CJDNS Protocol in the RAINBOW Stack 42
6.1 The Necessity of Mesh Networking in RAINBOW 42
6.2 Fundamentals of CJDNS . 43
6.3 Layering of CJDNS . 44

6.3.1 The Switch Component . 44
6.3.2 The Router Component . 46
6.3.3 The CryptoAuth Component . 47

6.4 Cross-Component Packet Processing . 48
6.5 Admission Control . 49

7 Towards Secure & Privacy-Preserving Overlay Mesh Networking 51
7.1 Design Choices & Benefits . 52

8 Conclusions 54

RAINBOW D2.2 PU Page IV

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

List of Figures

1.1 Relation to Other Deliverables and Work Packages 4

2.1 Remote Attestation Example (based on: [11],p.3) 7
2.2 TPM2.0 Hierarchies . 9
2.3 Evict Control with disk storage usage . 10
2.4 Interactive Rainbow Certification Chain . 11

3.1 Orchestration of Segregated VFs . 16
3.2 RAINBOW Trusted Extensions of platform Secure Remote Attestation: Attestation

by Proof (Left) and Attestation by Quote (Right). 18
3.3 Update PCR Measurements . 19
3.4 Create new Attestation Key . 20
3.5 Attestation by Quote . 21
3.6 Attestation by Proof . 21
3.7 Visual representation of how long an Adv can go undetected. 23
3.8 (a) Changing the number of attestations each key has to do and its impact on

the time of detection (20% utilization) and (b) shows how different utilization of
resources impact the time of detection with one AK use. 24

4.1 Notation Used . 29
4.2 An overview of the entities involved in a DAA protocol 30
4.3 High-level Overview of the RAINBOW DAA Protocol Interfaces. 31
4.4 RAINBOW DAA State Diagrams . 34
4.5 DAA Initiating the JOIN Phase (SETUP) . 36
4.6 DAA Completing the JOIN Phase . 37
4.7 DAA Key Creation . 37
4.8 DAA SIGN Phase . 38
4.9 DAA VERIFY Phase & DAA Node Quote . 38

5.1 ADHKE - Anonymous Diffie-Hellman Key Exchange 41

6.1 Layering of the CJDNS Stack . 45
6.2 Static Configuration of Trusted Peer . 49
6.3 Blink Acceptance Configuration . 49

7.1 System components interaction within RAINBOW 52

RAINBOW D2.2 PU Page V

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

List of Tables

3.1 Notation used . 16
3.2 Timings of integrity verification protocols (time in ms). Note that the hashing is

done without any secure hashing schemes and might be slower in practice. 22
3.3 Mean time (in ms) of using SW- and HW-TPM for updating measurements and

creating a new AK. 24
3.4 Mean time (in ms) of using SW- and HW-TPM for Attestation by Quote and Proof. 24

RAINBOW D2.2 PU Page VI

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

List of Abbreviations

Abbreviation Translation
AE Authenticated Encryption

AK Attestation Key

CA Certification Authority

CSR Certificate Signing Request

DAA Direct Anonymous Attestation

EA Enhanced Authorization

EK Endorsement Key

NMS Network Management System

PCA Privacy Certification Authority

PCR Platform Configuration Register

RA Remote Attestation

S-ZTP Secure Zero Touch provisioning

TC Trusted Component

TLS Transport Layer Security

TPM Trusted Platform Module

Vf Virtual Function

VM Virtual Machine

Vrf Verifier

WP Work Package

ZTP Zero Touch Provisioning

RAINBOW D2.2 PU Page 1 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 1

Introduction

The main goal of this deliverable is to present the first release of the RAINBOW Collective
Attestation enablers towards fulfilling the main vision of the project for the establishment and
management of trust-aware service graph chains. In this context, the communication over the
continuum from edge devices to fog nodes and back end cloud systems must support secure
interactions between all participating entities in order to establish service-specific “fog/edge
node communities of trust”. This is considered as one of the main goals towards “security and
privacy by design” solutions, including all methods, techniques, and tools that aim at enforcing
security and privacy at software and system level from the conception and guaranteeing the
validity of these properties.

RAINBOW will achieve high security and privacy guarantees by using a Trusted Platform Mod-
ule (TPM), enabled through the RAINBOW Sidecar proxy [21], as a central building block for the
trusted exchange of data as well as for secure device management. TPMs are trust anchors
that allow RAINBOW to develop new, highly efficient attestation techniques for both device
authentication purposes (when joining the IoT deployment) but also continuously attesting edge
device integrity and, in doing so, assess the security of involved devices. The goal is to prove to
remote parties that a fog node, its OS and running services are intact and trustworthy.

To do so RAINBOW is leveraging advanced cryptographic primitives (Direct Anonymous Attestation
(Chapter 4) for privacy) and enhanced remote attestation (Chapter 3) for security and operational
assurance. At a conceptual level, the goal is to enable fog/edge entities to establish and maintain
trust during the entire system life-cycle. This stems from establishing roots of trust in compo-
nents (by leveraging the attached TPM), and using these roots of trust to establish and maintain
trust relationships.

However, in the road towards the establishment of such trust-aware SGCs, fog/edge node in-
teraction is a challenge by itself since the target environment is dynamic and uncontrolled.
More specifically, a RAINBOW deployment consists of nodes that formulate temporal connec-
tions. In addition, nodes must route packets to each other without relying on static routing tables
and fixed network subnets. On top of that, there are two additional crucial constraints that need
to be taken into consideration. The first is the lack of a network addressing scheme and the
second is the establishment of trust among the nodes that participate in the fog deployment
towards the creation of “communities of trusted devices” that can enable the secure community
communications and can then be used for the trusted deployment of the envisioned services.

Addressing these challenges lies in the heart of RAINBOW towards the provision of a secure
overlay mesh network for delivering the high-level functionalities related to secure (edge
and mesh) device identification and integrity, data integrity and confidentiality, anonymity

RAINBOW D2.2 PU Page 2 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

and resource integrity as described in the overall framework reference architecture (see Deliv-
erable D1.2 [21]).

We have to note that in this deliverable the focus is on presenting the logistics, mode of op-
eration, and workflow of actions of all the core RAINBOW security, privacy and networking
enablers (as standalone components) and not the complete RAINBOW overlay mesh networking
stack with all the TPM-based security components integrated. A description of the conceptual
architecture of this overall RAINBOW security solution, along with a detailed documentation of
the design choices and its benefits, is presented in Chapter 7; more details on the subsequent
modeling and implementation activities will be described in D2.4.

1.1 Scope and Purpose

The main purpose of this deliverable is to present the first release of the RAINBOW Attestation
Toolkit enhanced with integrity verification and DAA trust extensions for attesting configu-
rational properties of a deployed fog node. More specifically, it documents the complementary
functionality of the integrity verification schemes focusing on ensuring not only the trust level of
each TPM-equipped platform but also the strong trust relations that must be established among
interacting entities. This requires the consideration of different aspects in each case; for instance,
trusting a TPM first requires trusting that it operates correctly, and in particular that sequences
of TPM commands are executed correctly, while ensuring that the interactions between attested
entities is secure is required in ensure to maintain the trust between them.

The goal is to describe the two specific functionalities, Attestation by Proof and Attestation by
Quote (see Figure 3.2), for enabling the automatic and secure establishment of trust between de-
ployed devices. The evidence of the integrity state of the configuration properties is authenticated
by the attached TPM.

1.2 Relation to other WPs and Deliverables

In what follows, Figure 1.1 depicts the relationships of the deliverable to the other Work Packages
(WPs). As aforementioned, the main purpose of this document is to consolidate, formally define
and evaluate the RAINBOW secure remote attestation solution and mesh networking stack. The
goal is to create a coherent analysis of the three mechanisms produced (Attestation by Proof,
Attestation by Quote, and Direct Anonymous Attestation) while also defining how the dynamicity
of the solution will function in the context of RAINBOW.

1.3 Deliverable Structure

In the remainder of this deliverable, we provide a detailed documentation of the enhanced RAIN-
BOW attestation enablers that have been designed for supporting platform authentication and
integrity verification while enabling the provision of privacy-preserving and accountable services.
First, we start by putting forth, in Chapter 2, an overview of the trusted component, namely
the Trusted Platform Module (TPM), considered in the context of RAINBOW as the underlying
Root-of-Trust coupled with details on the core TPM functionalities considered in our environment
towards secure device management and remote attestation. Then, details on the basic building
blocks, mode of operation and workflow of actions are provided for the designed RAINBOW trust

RAINBOW D2.2 PU Page 3 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 1.1: Relation to Other Deliverables and Work Packages

extensions; namely Zero-Touch Integrity Verification for verifying the current status of fog node’s
configuration when trying to (securely) enroll to the fog cluster (Chapter 3), and Direct Anony-
mous Attestation (DAA) (Chapter 4) for enabling strong privacy guarantees throughout the entire
operation of a fog-based ecosystem. These trust extensions are also coupled with a comprehen-
sive mapping of the TPM commands that need to be securely executed by the underlying TPM.
Next, we proceed with the description of another RAINBOW security enabler towards the estab-
lishment of anonymous secure and authenticated communication channels needed during the
node registration and key establishment process (Chapter 5). Finally, we elaborate on the current
CJDNS networking mechanism considered in RAINBOW (Chapter 6) and present the vision of a
secure overlay mesh network (enhanced CJDNS mesh networking stack) with all the aforemen-
tioned trust extensions integrated to be implemented in the upcoming tasks of WP2 (Chapter 7).
Chapter 8 concludes the deliverable.

RAINBOW D2.2 PU Page 4 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 2

Hardening the Fog/Edge IoT Stack:
Intertrustability of System Composability

2.1 Secure Remote Device Management

In RAINBOW, we are going to implement a decentralized Root-of-Trust system with the use
of the Trusted Platform Module. Here, the TPM is the root anchor of the overall system and
described more precisely in Section 2.1.2. The TPM can also be used to ensure secure boot
which is a crucial requirement for our newly designed trust extensions that attempt to verify the
configuration and behavioural correctness of all fog/edge nodes comprising the target fog-based
ecosystem. In RAINBOW the trust mechanism is established on the attestation of PCR
quotes in interaction with the TPM. This inherits the capability for secure boot, i.e., each device
that is using this trust mechanism is able to guarantee a secure boot startup. Due the significant
implementation overhead of the secure boot startup and variety of supported end devices the
implementation of a secure boot mechanism is out of the scope in the RAINBOW project. It
also would make no further scientifically contributions regarding the state-of-the-art since there a
number of different variants offering such a functionality. This is only interesting in an industrial
mass production.

2.1.1 Towards Decentralized Roots-of-Trust

A Root-of-Trust (RoT) is a crucial element in a computer-system and even more in a distributed
environment as the ones encounted in RAINBOW. Roots-of-trust enable other components
in a SW system to come to a trust decision for a given situation. A root-of-trust must be
relied on as itself cannot be verified, thus there are high requirements on their correctness and
robustness [40,47]. Nowadays, there exist several concepts to establish a RoT.

One solution is the Trusted Execution Environment (TEE). A TEE is an extra secure environ-
ment for execution of sensitive data or safe critical code. This Code ensures a high level of trust.
Figuratively speaking its a secured world with an isolation and access control to the normal
world. The biggest drawback compared to the TPM is that the TEE is not physically isolated from
the rest of the processing system, i.e., side-channel attacks (software and physical) [49].

Another solution is the Device Identifier Composition Engine (DICE) architecture [44] specified
by the TCG. It was designed for resource constrained devices, i.e., that are not capable of includ-
ing a TPM. However, according to TCG DICE does not imply any reduced implementation benefits
for complex systems. Compared to the TPM here DICE does not support the complex DAA Protocol

RAINBOW D2.2 PU Page 5 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

used for privacy-preserving node communication (Chapter 4). Also side-channel attacks can oc-
cur and DICE has not the same certified security level as the TPM. A secure, distributed system
such as the RAINBOW platform needs a trust anchor that verifies and ensures the correctness
of the overall system and provide an efficient mechanism to prevent side-channel attacks. For
RAINBOW a decentralized trust anchor has been chosen, in the form of Trusted Platform
Modules on the system’s end points. This anchor or main building block is a Trusted Platform
Module, short TPM. A TPM is a cryptographic co-processor on an computer system [8] and is
specified by the Trusted Computing Group [5]. There are several possibilities to use a TPM. Ac-
cording to the TCG [2] basically four types of TPM can be used (lowest number is the highest
security level).

1. Discrete TPM. The TPM provides the highest level of security and uses a discrete chip that
provides only cryptographical functionality. At this level the chip is designed to be tamper-
resistant.

2. Integrated TPM. Also the teram hardware TPM is used. However, beside cryptographical
functionality the chips also executes non-security related software.

3. Firmware TPM. The TPM is implemented in protected software, e.g., Trusted Executed
Environment (TEE), and runs on the core CPU.

4. Software TPM. The TPM is implemented as a emulator. Furthermore, it does not ave any
key applications and therefore no secure storage for the keys. This purpose is optimal to
build a prototype.

There also exists a virtual approach called virtual TPM. In this case, the TPM provides for
each virtual machine a software TPM which offers the same command set as a physical TPM.
How virtual TPMs protect keys and data is implementation specific and depends on the operator’s
policies.

Due the high risk of side-channel attacks, at least a hardware TPM shall be used when the com-
puter device is physically accessible, otherwise a firmware or even a software TPM may be used.
Subsection 2.1.3 covers the core TPM functionalities of interest (the ones based upon the RAIN-
BOW trust extensions have been designed) in more detail.

The distributed use of TPMs is a strong enabler for secured decentralized systems. In
this context, decentralized deployment of roots-of-trust offers several benefits in contrast to single
centralized ones. First, the system is more tolerant against faults and no single point of failure is
introduced. As an example: In a mesh network one node fails, the network algorithm re-routes the
other participants to ensure the availability of the other nodes. Second, such a system provides
more resistance against attacks, i.e., no single attack point that demilitarize the entire system.
Third, it increases the collusion resistance in the way that participants are not able to collude for
own prioritized targets.

Figure 2.1 shows an attestation example. The attestation is used to confirm the identity of the
platform and prove to a remote party that the Operating System (OS) is in an valid state. As it
will be described in Chapter 3, this functionality is the base point used in our newly designed
RAINBOW Configuration Integrity Verification trust extensions towards the establishment
of trust-aware service graph chains (SGCs). Here, the root-of-trust is the OPTIGATM TPM
chip from Infineon. The Application within the platform generated a public and private key-pair

RAINBOW D2.2 PU Page 6 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 2.1: Remote Attestation Example (based on: [11],p.3)

and sends the public portion to the TPM (1). Then the TPM computes a hash out of the message
and creates a certification including the public key from A and the generated hash with the private
Attestation Integrity Key (AIK) from the TPM (3). To authenticate the platform to a remote party
the application send this cert package together with the certificate issued to the TPM by a CA
(Certificate Authority) (4). Now, the remote party is able to verify the certificate chain (5) and
looks up the hash in a database (6). If the certificate chain is trustworthy the communication
continues, e.g., establish a session key, otherwise the platform will be informed that he is not able
to continue further (8). This, or a similar attestation protocol can be executed between each node
of the RAINBOW network, potentially without communicating with a central instance.

2.1.2 Rainbow Hardware Security Anchor: Trusted Platform Module

As aforementioned, in RAINBOW we are going to use a Trusted Platform Module (TPM). More
specifically, we are using the OPTIGA™ TPM SLx 9670 TPM2.0 products. These are fully TCG
compliant TPM products with CC (EAL4+) and FIPS certification. According to [34] the in Rainbow
used SLB 9760 includes following noteworthy features:

• SPI (Serial Peripheral Interface) with a transfer-rate ≤ 43 MHz

• RNG according to [12]

• EK and EK certiciate are fully personalized

• 24 PCRs. Here, SHA-1 or SHA-256 is supported.

• > 696 bytes free NV memory

• ≤ 3 loaded sessions (TPM PT HR LOADED MIN)

• ≤ 64 active sessions (TPM PT ACTIVE SESSIONS MAX)

• ≤ 3 loaded transient Objects (TPM PT HR TRANSIENT MIN)

• ≤ 7 loaded persistent Objects (TPM PT HR PERSISTENT MIN)

RAINBOW D2.2 PU Page 7 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

• ≤ 8 NV counters

• ≤ 1 kByte for command parameters and response parameters

• ≤ 768 Byte for NV read or NV write

• 1420 Byte I/O buffer

The power-management is handled by the TPM internally, i.e., no specific power-down or standby
mode. Here, the TPM invokes a low-power state after a command/response transaction. The SPI
interface is configures with wake-up, i.e., TPM wakes up when a transaction is started on the bus.

2.1.3 Rainbow Software: Trusted Platform Module as a Building Block

As mentioned before, a Trusted Platform Module (TPM) is a security controller for cryptographic
devices and is physically separated from the main processor, i.e., cryptographic co-processor.
It is designed to protect security critical data, e.g., cryptographic keys, passwords, and to resist
logical and physical attacks. The TPM includes the following core concepts which are important
in context to RAINBOW [8,40]:

• TPM Binding. Here, the TPM encrypts data with a unique RSA key. This key is derived
from a storage key.

• Platform Configuration Registers (PCRs). These registers are used to cryptography
measure the software state or the software configuration. As an example a boot process:
firmware→ firmware→ peripheral firmware→ boot loader→ kernel→ drivers→ libraries
→ applications→ security settings. If one of a PCR value does not math a certain behavior
the device will not boot.

• TPM Sealing. Here, the TPM encrypts data under a non-mitigable key and to a set of PCR
values.

• Attestation. Attestation is one of the crucial services of a TPM. It is the process by which
a platform reports in a trusted way the current status of its configuration. The report can
include as much information as required. The basis of the attestation are the measurements
recorded in PCRs. They can then be read to know the current status of platform and be
also signed to provide a secure report. The signed message can then be sent to the client.
It is worth noticing that the TPM does not check the measurements, that is, it does not know
whether a measurement is trustworthy or not. The trustworthiness of the measured value
comes when an application uses some PCR value in an authorization policy, or remote
clients ask for an attestation of some value, and later they evaluate its trustworthiness.
Attestation enables such clients to confirm whether the platform has been compromised.
Additionally, the TPM offers means of certifying and auditing the properties of keys and data
that cross the TPM boundary. Furthermore, it is used to support pseudonyms in relation to
DAA.

• TPM Signing. Here, enables to sign a signature with a key that is protected within the TPM.

The TPM provides three persistent key-hierarchies, namely platform-, endorsement-, and
storage-hierarchy and one volatile hierarchy called NULL hierarchy. Figure 2.2 shows the
hierarchies that will be leveraged within RAINBOW for storing the needed keys.

RAINBOW D2.2 PU Page 8 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 2.2: TPM2.0 Hierarchies

The Platform hierarchy is under th control of the manufacturer while the Storage hierarchy is used
by the platform owner and it can be disabled by the platform owner. Here, the storage hierarchy is
designed for non-privacy-sensitive operations. Last, the endorsement hierarchy that is arranged
for privacy-sensitive operations. Furthermore, the TPM offers one non-persistent hierarchy called
NULL hierarchy. At this hierarchy [8].

To use the current TPM2.0, there exists two different implementations. The first one is the tpm2-
software implementation from the Frauenhofer SIT [4] and is based on the TCG specification [5]
while the second one called IBM’s TPM 2.0 TSS from Ken Goldman [3]. Here, the IBM’s TPM 2.0
TSS is not API compatible with the TCG specification but the functionality is equivalent.

Figure 2.3 shows a sequence diagram of how a primary and a child key are generated and
saved to the NV-memory inside the TPM2.0. The example is based on the Frauenhofer TSS
implementation and its Enhanced System API (ESAPI) layer according to the TCG specification
[45]. Beside this TPM functionality, the diagram also includes disk storage mechanism, i.e.,
keys do not need to be generated again. This general mechanism can be used for all kinds of
cryptorpahic keys in the RAINBOW platform; for each key, specific policies can be added to
ensure their correct and consistent usage.

In step one, the platform needs to initialize the TPM Command Transmission Interface (TCTI) [46]
and the TPM startup in the setup-phase. Here, the TCTI interface is needed to transmit and re-
ceive TPM commands (Tss2 TctiLdr Initialize) and the two following Esys commands are used
to initialize and startup the Esys context (Esys Initialize) and to startup the TPM (Esys Startup).
After the setup phase the platform is ready to communicate with the TPM. The usecase in this
figure is specific to a key-creation process with persistent key storage. In the Create Primary
and store it into the Non-Volatile (NV) memory section. The platform defines some authentication
block and sets the authorization value for a resource (here for the primary key) with the func-
tion Esys TR SetAuth,i.e., access control. Then the platform triggers the Esys createPrimary
function with a predefined key-scheme to create a primary key. This key can later used (create
child key section) to derive new child keys under this primary key. With Esys EvictControl the
platform flushes the previous created primary key into the NV memory section, i.e., the key is
available after a reboot/shutdown. The next section (load the NV key) serializes the metadata

RAINBOW D2.2 PU Page 9 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 2.3: Evict Control with disk storage usage

of a TR-Object into a byte buffer for writing it into a file (Esys TR Serialize) and stores it onto
the hard disk. Note: the deserialize step is additionally. The fourth block is the creation of a
child key with the previously stored key data from the hard disk. Here, the platform reads the

RAINBOW D2.2 PU Page 10 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

key-file form the disk storage, sets as in the create primary key an own authentication value,
creates a new cryptographic key (Esys Create) and loads the key into the RAM (Esys Load).
Note: Esys CreatePrimary int contrast to Esys Create implicitly include the load mechanism. Ad-
ditionally, the fresh generated child key can be also stored in the NV memory section with the
Esys EvictControl command. This depends on the usecase. The last block flushes the key from
the RAM to ensure that new keys can be generated. Note: Three loaded keys are storeable in
the RAM (tpm2-tool command tpm2 getcap properties-variable [4]) For the IBM’s TPM 2.0 TSS
stack the concepts is the same but the function calls vary. Here, the TSS Execute function and
a specific TPM CC command-code is called to communicate with the TPM after a TSS Create
function that creates a TSS context. If this context needs to be changed during runtime, this can
be done with the TSS SetProperty function.

In the context of RAINBOW, we are planning to use the IBM’s TPM 2.0 TSS stack. For the DAA
functionality we are going to use and extend the implementation from Wesemeyer et al. [50]. This
implementation is based on the previously mentioned software IBM’s TPM 2.0 TSS stack.

2.2 RAINBOW Security Asset Management Services

In this section we want to clarify the need for Security Asset Management in the Rainbow Plat-
form. The assets that we need to support through such a functionality are keys, passwords,
user-data, and routing table information for the underlying mesh networking mechanism
(i.e.,CJDNS).

Figure 2.4: Interactive Rainbow Certification Chain

Throughout the Cloud and Fog Computing components of the RAINBOW architecture, the se-
curity assets can be protected by adherence to best practises in data management and
software security. However, on the edge devices, or the IoT devices, hardware security will be

RAINBOW D2.2 PU Page 11 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

employed to a) ensure interactive, online authentication of the devices and their commu-
nications, and b) protect keys and data at rest, i.e. in the time-frame the application software
cannot protect it. All this is to be achieved with full privacy protection.

A number of devices, hardware features and software services need to interact to achieve au-
thentication and data protection. We now outline how this can be achieved in the RAINBOW
architecture by discussing an example; the interactive, privacy-preserving authentication of the
services offered by an abstract “Entity” (e.g. IoT device, edge node,) service.

Figure 2.4 shows the Interactive Rainbow Certification Chain with the key handling. Here, the
black lines are in direct interaction with the TPM module and the red ones are managed by the
orchestrator with the help of the TPM. The diagram includes two key-storage hierarchies from
the TPM, namely the Endorsement-Hierarchy (EH) and the Storage-Hierarchy(SH) described in
2.1.3.

The Endorsement Key is used in the RAINBOW enrollment phase to identify the hardware as
member of the RAINBOW ecosystem. The public part of the EK is registered in a one-time
enrolment action. The TPM manufacturer vouches for the authenticity and uniqueness of each
EK and that is well-protected by a certified TPM. Roge TPMs (for instance if a host device has
been stolen) may be revoked with appropriate revocation services (Section 4.3.4).

Once that TPM is registered, an arbitrary number of pseudonymous Attestation Identity Keys
can be created by each TPM (Section 4.3.2). The keys that are needed for the anonymous
attestation are located in the EH. Here, the AIK key is a pseudonymous link to the endorsement
key. The AIK is established in the DAA Join Phase and certified by the DAA verification values
(Chapter 4). For each AIK, the fact that it is hosted and protected on a certified and registered
TPM can be proven with the DAA protocol; the resulting verification values certify that the AIK
originates from a RAINBOW TPM, but it gives no indication from which specific device it is from.
The lifecycle of the AIK is not restricted; depending on each user services’ requirements, it may be
created once, in the beginning of the device/software lifecycle, or even at every single execution
of a given protocol.

Any User Key can now be either created within the TPM or in a user application. The AIK can
be used to sign a User Key. This provides a pseudonymous prove, that UK is part of the Rain-
bow ecosystem, without unveiling on which platform. In our example, the user Key has two sign
functionalities. First self-sign the use-case certificate that is provided by the Orchestrator (Orc)
and the second one is to sign the entity certificate for certifying the Entity Key. The entity cer-
tificate can now be a conventional cryptographic certificate with an arbitrary lifetime, depending
on the service offered. The achieved security level depends on the service configuration. In the
example, UK is TPM-protected, but Entity Key is not.

To sum up, TPMs give full control on which devices join the RAINBOW platform (Chap-
ter 3), and at the same time allow the services full control whether to make the link to a device
visible or not. Services can enjoy TPM protection of their assets, but are not restricted to TPM
functionalities.

2.3 Solidifying a System’s Integrity: Inter-Trustability of Inter-
nal Configuration Properties

A combination of the aforementioned concepts is of great interest to the secure composability
of fog-based service graph chains (SGCs), encompassing a broad array of mixed-criticality ser-

RAINBOW D2.2 PU Page 12 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

vices and applications. In particular, RAINBOW strives to enable orchestration of heterogeneous
platforms containing mutable configurations by leveraging the profoundness of existing attesta-
tion techniques. In what follows, we elaborate on the inherent functionalities of a TPM that are
leveraged by the new set of remote attestation algorithms presented in Chapter 3.

Monotonic Counters for Trusted Measurements. Internally, each TPM has several PCRs that
can be used for recording irreversible measurements through accumulation, e.g., extending PCR
slot i with measurement m, the TPM accumulates: PCRi = hash(PCRi||m). This is an in-
dispensable property towards the creation of strong and transitive roots of trust. For instance,
to enforce and regulate trustworthiness of the system boot sequence we can require that all
components measure and verify their successors by the following recurrence construct [42]:
I0 = true; Ii+1 = Ii ∧ Vi(Li+1), where i ≤ n ∧ n ∈ N∗, Ii denotes the integrity of layer i and
Vi is the corresponding verification function which compares the hash of its successor with a
trusted reference value. For example, as in [25], let us assume that we require the boot se-
quence: seq〈sinit, BL(m), OS(m), V S(m), V M(vf), APP (vf)〉, where sinit is the value that
the PCR is reset to. If we know that the sequence will yield PCR extensions with the values
v1, . . . , vn, and all components extend PCR j, then we will trust the chain if and only if (iff)
PCRj = hash(. . . (hash(sinit||hash(v1))||hash(v2)) . . . ||hash(vn)).

Attestation & Policy-Based Sealing/Binding. Attestation can be either local or remote. Lo-
cal attestation is based on Attestation Keys (AKs), which are asymmetric key pairs AK =
{AKpub, AKpriv}. To perform local attestation, we enforce usage restrictions (authorization poli-
cies) onto AKpriv, such as requiring that PCRs must be in a certain state to permit signing opera-
tions, e.g., PCRj (from the example above) actually reflects the accumulation of v1, . . . , vn. Thus,
using AKpriv to sign a nonce chosen by Vrf provides indisputable evidence that the machine
state is correct. Remote attestation is delegating the verification of PCRj to Vrf, through TPM
quotes comprising a signed data structure of the nonce and the contents of a specified choice of
PCRs, which Vrf verifies against trusted reference values. Regardless of the attestation method,
Prv must also prove authenticity to Vrf. The TPM contains several key hierarchies, but authentic-
ity is founded specifically in the endorsement hierarchy. The root endorsement seed, from which
Endorsement Keys (EKs) are generated, passes irrefutable evidence to the EK in a transitive
manner. The credibility of the seed, and hence loaded EKs, is usually based on the trustwor-
thiness of the Original Equipment Provider (OEP), which during manufacturing signs, loads, and
later vouches that the seed corresponds to a valid TPM [51].

RAINBOW D2.2 PU Page 13 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 3

RAINBOW Zero Touch Configuration:
Integrating Trust Extensions into Fog/Edge
Secure Enrollment

Leveraging cryptographic techniques and Trusted Components (TPMs) towards protecting and
proving the authenticity and integrity of fog nodes is one of the core objectives of RAINBOW. As
has been described in previous deliverables [22], this serves as the foundation on which cloud-
based services can start building a well-rounded cybersecurity strategy.

In order to support enhanced system and network trust assurance, RAINBOW has defined
the security protocols that are necessary for providing a range of secure attestation services
in order to support verifiable evidence on the correct configuration state and/or execution
of a remote platform; ranging from secure boot to run-time integrity referring to the entire life-
cycle of the platform. Two enablers of trust are of interest towards protecting and proving the
authenticity and integrity of fog nodes. Whereas integrity provides evidence about correctness,
authenticity provides evidence of provenance.

As part of the overall RAINBOW attestation toolkit [21], the main goal is to allow the creation
of privacy- and trust-aware service graph chains (managed by the Orchestration Lifecycle
Manager and estabslished by the RAINBOW Deployment Manager) through the provision of zero-
touch configuration functionalities: fog nodes, wishing to join a fog cluster, adhere to the
compiled attestation policies by providing verifiable evidence on their configuration integrity and
correctness. In other words, the framework should provide guarantees that a node will be able
to join a network (and participate in the underlying dynamic routing scheme - Chapter 6 - as
well as the privacy-preserving key management process - Chapter 4) if and only if it can prove
to the Orchestrator (Orc) that it is at a “correct state” - without, however, the Orc needing to
know the node’s state beforehand. This allows RAINBOW to support the secure enrollment and
integration of heterogeneous devices and platform equipped with different computing resources
and operating systems.

The failure of such an attestation process may be the indication of a zero-day vulnerability (or
another detected exploit) and/or malfunction, thus, resulting in prohibiting the on-boarding of the
target node in the fog cluster and already deployed service graph chain. If any of the enforced
security policies fail, from malicious intent or faulty behaviour, the next logical step is to identify
what was the cause of this event. This will enable better situation awareness adaptation
for re-calculating the overall risks and threats of the entire ecosystem (considering the newly
identifed vulnerability) allowing policy adjustments and the compilation of updated mitigation
strategies and attestation policies.

RAINBOW D2.2 PU Page 14 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

The goal is to observe, model and monitor not only the trust level of each TPM-equipped fog
node but also the strong trust relations that must be established among interacting entities. This
requires the consideration of different aspects in each case; for instance, trusting a TPM first
requires trusting that it operates correctly, and in particular that sequences of TPM commands
are executed correctly, while ensuring that the interactions between attested entities is secure is
required in ensure to maintain the trust between them. Thus, the best approach - as has been
adopted by RAINBOW - is to use a combination of remote attestation protocols towards achieving
both load- and run-time integrity of a device’s execution: The assurance that a device
works correctly after loading is known as load-time integrity, while run-time integrity refers
to the whole process lifecycle.

Notably, as aforementioned in Chapter 2 secure remote attestation is one of the most popular
services provided by the TPM towards the creation of chains-of-trust based on verifiable evi-
dence about the integrity and execution correctness of a platform. As part of the RAINBOW
Attestation Toolkit, we will provide new instances of Platform Integrity Verification and
Direct Anonymous Attestation (DAA) (Chapter 4) as platform authentication mechanisms
that enable the provision of privacy-preserving and accountable services.

In terms of design, as will also be described in the following sections, the focus of RAINBOW
Enhanced Remote Attestation is on cloud-native component (denote as virtual function, VF) In-
tegrity Verification and on secure enrolment. Integrity verification is the process by which a
fog node (i.e., hosting a VF) can report in a trusted way (at any requested time) the current status
of its configuration. It entails the provision of integrity measurements and guarantees during both
the deployment and operation of a VF; covering the system integrity at the deployment phase
by the RAINBOW Orchestrator but also ensuring the integrity of the loaded components during
their run-time execution.

3.1 System Model

The considered system (Figure 3.1) is composed of a virtualized network infrastructure in which
the Orchestrator (Orc) spawns and governs a set of heterogeneous VF instances, as part of
dedicated service graph chains. Each graph is composed of the ordered set of VFs that the
service runs to manage better the correct execution of the onboarded (safety-critical) application
workloads and guarantee its offered attributes (e.g., reliability, availability, performance). State-of-
the-art software engineering trends are based on the VF microservice concept for achieving high
scalability and adequate agility levels [35]. In RAINBOW, we assume the integration of lightweight
virtualization techniques, namely containerization [10], where applications are decomposed into
a mesh of cloud-native containerized VFs, each one with specific and “small-scope”-stateless
processing objectives, packaged on independent virtual execution environments equipped with
highly secure anchors (i.e., TPMs) that serve as our RoTs. Each deployed VF contains workload
configurations, such as its software image, platform configuration information, and other binaries
(see Definition 1), which are measured and securely accumulated into the PCRs of the TPM.

Definition 1 (Configurations). The configuration set of a VF encompasses all objects (blobs of
binary data) accessible through unique file identifiers.

More formally, theOrc maintains a Service Forwarding Graph (SG), of function chains, defined as
SG = {s1, s2, . . . , sn}, where n ∈ N∗. Each service chain comprises a set of deployed VFs, si =
{vf1, vf2, . . . , vfm}, where m ∈ N∗ and si ∈ SG, deployed over the substrate virtualized network.

RAINBOW D2.2 PU Page 15 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Table 3.1: Notation used

Symbol Description

VF A Virtual Function VF
Adv An adversary resident in a VF
T C Trusted Component
EK Endorsement Key containing a public and pri-

vate part (EKpub and EKpriv) and a protected
symmetric key used for encrypting child keys
(EKsk

priv)
AK Attestation Key
σ Cryptographic signature
KH Key handle to a loaded key in the T C
I Selection of PCR identifiers
n Randomly generated nonce
S Internal session digest in T C
Atmp Key template
hConf

† Expected configuration (PCR hash)
hPol Policy digest based on hConf
hCreate Key creation hash, w. T C state and parent key
T † Creation ticket proving origin of creation hash
Acert Key creation certificate
QCert Quote Certificate
hβ

† Hash of a binary

† We further use a prime to denote a reference, e.g., h′Conf is a calculated refer-
ence to the actual hash of the PCR contents.

id vPCR state EKpub AKpub

1 {. . .} trusted
2 {. . .} untrusted

· · ·
n {. . .} trusted

• • •

Config <

Config <

Config <

vTPM ï
µ

vTPM ï
µ

vTPM ï
µ

Tracer ü
µ

Tracer ü
µ

Tracer ü
µ

®

a

®

é

w

ID : 1

ID : 2

ID : n

Orc

Figure 3.1: Orchestration of
Segregated VFs

The ownership of the physical resources, over which the secure deployment and placement of
these SGs take place, is not of interest. Each vfi ∈

{⋃n
j=1 SGj

}
is defined as a tuple of the

initial form: vfi = (id, vPCR, state, EKpub, AKpub), where id is the unique VF identifier, vPCR
refers to an artificial set of PCRs that reflect the obligatory policy (measurements) that must be
enforced in the actual PCRs of the target VF, state denotes whether the VF is considered trusted
or not (policy-conformant), EKpub and AKpub are the public parts of the EK and AK of the vTPM
that is uniquely associated with vfi.

In addition, each VF is equipped with a Runtime Tracer (T rce) for recording the current state of the
loaded software binary data (during both boot-up time and system execution) to be then securely
accumulated into the PCRs of the hosted TPM. Tracing techniques are used to collect statistical
information, performance analysis, dynamic kernel or application debug information, and general
system audits. In dynamic tracing, this can take place without the need for recompilation or
reboot. In the context of RAINBOW, a detailed dynamic tracing of the kernel shared libraries, low-
level code, etc., and an in-depth investigation of the VF’s configuration is performed to detect any
cheating attempts or integrity violations. Such a T rce can be realized either as: (i) a static binary
analyzer for extracting hashed binary data measurements (i.e., digests) [6], or (ii) a general,
lightweight tracer with kernel-based code monitoring capabilities.

This process builds on top of the IMA feature [43] and records measurements of the VF’s software
binary images of interest (as specified in the deployed security/attestation policy) that reflect its
state/integrity: these can span from hardware-related properties related to the BIOS/UEFI and
kernel information, to dynamic properties such as executable code, structured data and tem-
porary application data (e.g., configuration files, file accesses, kernel module loading). When
a measurement is extracted (Section 3.3), a register of the TPM accumulates the digest of the
captured event data to protect the integrity and constitutes the basis of the subsequent verifica-
tion of a VF’s trusted state: The trust state is the result of the remote attestation functionalities

RAINBOW D2.2 PU Page 16 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

of RAINBOW, in which the measurements of the software loaded on a VF is verified either lo-
cally (Attestation by Proof) or by the Orc (Attestation by Quote) against reference values that
characterize known (and, thus, trusted) software configurations.

Definition 2 (Tracer, T rce). Given an object identifier (see Definition 1), the T rce utility returns
(in a secure way) the corresponding object’s binary data.

3.2 High-Level Overview

The solution can be either applied separately to each deployed VF, equipped with a “Root-of-
Trust” security anchor (TPM), or the entire Service Graph Chain (SGC). The overall goal is to
design secure remote attestation services capable of achieving the security properties of VF
Configuration Correctness, SGC Trustworthiness, Attestation key Protection, Immutability,
and Liveness & Controlled Invocation, as decscribed in Deliverable D2.1 [23].

A key challenge, in this context, is to establish and manage trust between entities, starting from
bi-lateral interactions between two single system components and continuing as such systems
get connected to ever larger entities. But how can we make sound statements on the security and
privacy properties of single systems and transfer this to statements on the security properties of
hierarchical service graph chains?

Towards this direction, our schema provides two specific functionalities, Attestation by Proof and
Attestation by Quote (see Figure 3.2), for enabling the automatic and secure establishment of
trust between deployed platforms. This is part of the overall RAINBOW Attestation Toolkit: For
privacy, RAINBOW will leverage advanced crypto primitives, namely Direct Anonymous Attesta-
tion (DAA) (Chapter 4), whereas for security and operational assurance, it will enable the provision
of Configuration Integrity Verification.

The evidence of the integrity state of the configuration properties is authenticated by the attached
TPM. Key features provided include the: (i) the possibility for low-level fine-grained tracing capa-
bility (Attestation by Quote), and (ii) the option for privacy-preserving attestation (Attestation by
Proof). The former is a significant feature because, once a platform is compromised, it can be
immediately retracted without affecting the entire service graph chain, thus, catering to efficient
service management and flexible slicing [13]. The latter enables the integrity verification of a
designated platform without conveying other platform’s information (or unnecessary information
of the underlying host) to a remote entity (acting as the Vrf), in case of a malicious Vrf being
aware of which components the underlying host and other processes have. This is of paramount
importance in emerging fog based environments, leveraging such advanced security capabilities
to support safety-critical services with strict security, trust, and privacy requirements [29].

The offered secure attestation trust extensions allow to assess and preserve the integrity of the
deployed platform’s Trusted Computing Base (TCB), at load-time and during system execution, by
leveraging the capabilities of TPMs, and reducing performance impact by minimizing the neces-
sary interactions with the host trusted component. It supports complete, configurable attestation
that acquires binary signature chains from different unique registers, enabling advanced tracing
capabilities to localize areas of compromise. Both schemes rely on the platform to access a TPM
with irreversible PCRs. The privacy-enhanced feature builds on the use of an Attestation Key
within the TPM that can only execute a cryptographic operation if a set of PCRs is in particular
(trusted) state, inferring the correctness of the component.

RAINBOW D2.2 PU Page 17 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 3.2: RAINBOW Trusted Extensions of platform Secure Remote Attestation: Attestation by
Proof (Left) and Attestation by Quote (Right).

Figure 3.2 presents the information flow of the RAINBOW integrity verification capabilities be-
tween a Prover (Prv) and a Verifier (Vrf): In a nutshell, this attestation toolkit detects offline and
online attacks on mutable files (configuration properties) by verifying their hashed digest with a
trusted reference measurement extracted from a corresponding PCR on the Orc. Attestation re-
ports produced by the (verified) platforms can include as much information as required based on
the already defined attestation policies (including the configuration properties to be traced).

Attestation policies must be expressive and enforceable and can be dynamically updated by the
Orc. After defining proper policies, this engine can proceed to periodically (or on-demand) attest
to the modeled configuration properties representing the current state of the target platform. A
platform is trusted if its state (at that time) matches the (already measured) reference state. As
each platform is a combination of multiple software processes running, its hashed digest defines
its state. By comparing the hashed digest (at any given time) to the reference (expected) hashed
digest of the platform, provided by the Orc, we can determine the platform trustworthiness.

3.3 RAINBOW Zero-Touch Integrity Verification Building Blocks

The core of our schemes (Figure 3.2) is the manageability of mutable configurations through-
out the lifespan of a fog node operation and is accomplished by having the Orc mediating any
security-critical updates towards the deployed platforms. Whenever the orchestrator extracts new
security attestation policies (due to potentially identified new vulnerabilities), containing updates
on the set of configuration properties to be verified, or due to changes in configurations, it proac-
tively determines the update’s expected implication by accumulating the artificial vPCR construct
of the corresponding device (Step 1R). The Orc requests the platform to similarly accumulate its
PCRs to reflect potential changes (Steps 2R-3R). This update request contains only the PCR
index i that must be updated and a configuration file identifier to measure. Upon receiving such
update requests, the device then invokes the T rce to measure the requested file(s) and sub-
sequently invokes the attached TPM to extend PCR i with the new measurement. The simple
update protocol is depicted in Figure 3.3.

In this context, to initiate the re-measurement process of a device, the Orc sends an Update

RAINBOW D2.2 PU Page 18 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

TPM

 Fognode

 Orc

PCR vPCR, βID, h
′
β

i ←$ {1, 2, . . . , 24}
vPCRi := hash(vPCRi || h′β)

i, βID

β := Tracer(βID)

hβ := hash(β)
PCR Extend(i, hβ)

PCRi := hash(PCRi, hβ)

Figure 3.3: Update PCR Measurements

Measurements request detailing which file object should be re-measured (using T rce) and into
which PCR registers it should be registered. Note that the Orc knows what the correct PCR
values should be since it also accumulates the artificial PCR registers (vPCRs), as part of the
attestation policy, corresponding to the target device. To perform a verifiable assessment of the
current state of a device’s PCRs, the Orc sends an Attestation by Quote request detailing which
PCR registers should be included in the quote, denoted I, and a nonce n to enforce freshness
and prevent replay attacks. After the device has securely instructed its TPM to construct the
necessary quote certificate and signature (over the certificate), it forwards them to the Orc. If the
signature over the quote is deemed correct (signed by the device’s EKpriv), the certificate can the
be verified for determining whether it contains the “magic header” (proving that it was generated
inside the TPM and whether the PCR values correspond to the trusted PCR values (vPCR) that
were artificially accumulated on the Orc when the VF was last updated.

Furthermore, the privacy-preserving attestation (i.e., local attestation) requires the use of special-
ized signing keys, called attestation keys (AKs), which can be bound to specific PCR contents,
hence making an AK operable iff the PCRs reflect the particular PCR state in which the AK is
bound to. However, to retain the viability and correctness of such an attestation (despite muta-
ble PCRs), we must create and bind a new attestation key whenever a device’s configuration is
updated. Since the key creation process is best achieved locally, theOrc requests a device to cre-
ate a new attestation key based on the trusted measurements that were artificially accumulated
before requesting the device to update its PCRs. First, the Orc computes an Extended Autho-
rization (EA) policy digest based on the trusted measurements (Step 1L), denoted hPol, which
reflects the trusted state in which the AK must be bound to. The policy digest is then deployed
together with a subset of PCRs, I, to which the policy applies. Upon receiving such a request,
the device is responsible for creating the attestation key on the TPM (Step 2L). To trust that the
policy is actually enforced and that the state of the device is conformant to the policy, the device
must present indisputable evidence towards the: (i) creation of AK happened inside the TPM, (ii)
provided policy digest governs the key, and (iii) proof originates from a distinct TPM.

Fig. 3.4 presents the underpinnings of the protocol for AK creation, where a device initiates the
process by constructing a “key template” based on the received policy digest. This template dic-
tates the fundamental properties of the key, i.e., whether it is a signing key, decryption key, or
both, and whether it is restricted (operates solely on TPM-generated objects). The template is
passed to the TPM, which creates an AK as a child key of EK. This process outputs a creation
hash hCreate and a ticket T , where T is computed with the inclusion of a secret value (Proof)
known only by TPM, which proves that the TPM created the AK (Step 2L). The ticket is subse-
quently passed as an argument to the certifyCreation functionality of the TPM, together with
AK, to enable AK’s certification using EK, which, due to being restricted, requires such indis-
putable evidence about the provenance of an object. The certificate and its signature are then

RAINBOW D2.2 PU Page 19 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

TPM

 FogNode

 Orc

EK, Proof vPCR, I ⊆ {1, 2...24}, EKpub

hConf′ := hash(vPCRi, ∀ i ∈ I)
hPol := hash(CCPolicyPCR ||I

|| hConf′)
I, hPol

Atmp:= CreateTemplate(hPol)

LoadEK

KHEK := LoadEK
KHEK

TC Create(Atmp, KHEK)

{AKpriv , AKpub} := CreateKey(Atmp,

KHEK)

AK := {Enc(AKpriv , EKsk
priv), AKpub}

hCreate := hash(TPM STATE || EK)

T := HMAC(Proof, hCreate, AK)
AK, hCreate, T

TC Load(AK, KHEK)

AK,KHAK := {Dec(AKpriv , EK
sk
priv),

AKpub}
KHAK

TC CertifyCreation(KHEK ,
KHAK , hCreate, T)

T ′ := HMAC(Proof, hCreate, AK)

Acert := FillAttestInfo(hCreate, AK)

σcert := Sign(Acert,KHEK) ⇐⇒
T ′ == T

σcert, Acert

σcert, Acert, AK

V F.AKpub := AKpub ⇐⇒
VerifySignature(EKpub, σcert, Acert) ∧
VerifyCreationCertificate(Acert, hPol,

AKpub)

Figure 3.4: Create new Attestation Key
sent to the Orc for verification (Step 3L-4L). The generated AK is trusted iff the signature over
the certificate is verified to be authentic, based on the device’s EKpub. The certificate reflects that
the AK was created to require the correct attestation policy to be used for signing operations and
that the certificate includes a (public) value called the “magic header” whose presence proves
that the signed object was created internally on TPM.

Attestation by Quote. The protocol for remote attestation using the TPM quote structure is
presented in Fig. 3.5. In this protocol, theOrc sends a nonce n (to enforce freshness and prevent
replay attacks) and a selection of PCRs to attest, I (Step 4R). The device subsequently passes
these arguments to the attached TPM which constructs a quote structure comprising the current
values of the chosen PCRs, and signs it with its EK (Step 5R), which as with AK creation, proves
that the quote structure is internal to the TPM. The quote certificate and signature are then sent
to the Orc (Step 6R). The quote and its signature are successfully verified by the engine (Step
7R) iff they are valid, and if the PCR values correspond to the artificial reference values (vPCR)
managed by the Orc.

Attestation by Proof. In the Attestation by Proof protocol (Fig. 3.6), the Orc only sends a
fresh nonce n to a device (Step 5L). If the device presents Sign(n,AKpriv) (Step 6L), where
AK is a fresh and verified AK, then this is indisputable evidence that VF is in a trusted state
(Step 7L). Note, that both the Attestation by Proof and Quote can only attest to the last known

RAINBOW D2.2 PU Page 20 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

TPM

 FogNode

 Orc

PCR,EK EKpub, I ⊆ {1, 2...24}, vPCR

hConf′ := hash(vPCRi, ∀ i ∈ I)
n ←$ {0, 1}η

n, I

LoadEK

KHEK := LoadEK
KHEK

TC Quote(KHEK , n, I)

hConf := hash(PCRi, ∀ i ∈ I)
QCert := {hConf, I, n}
σa := Sign(QCert,KHEK)

σa, QCert

V F.state := Trusted ⇐⇒
VerifySignature(EKpub, σa, QCert) ∧
VerifyQuoteCertificate(QCert, n, hConf′)

Figure 3.5: Attestation by Quote

measurement. Thus, both attestation schemes are tightly coupled to run in conjunction with the
update of measurements protocol for achieving run-time device integrity.

TPM

 Fognode

 Orc

PCR,EK,AK I ⊆ {1, 2 . . . , 24} AKpub

n ←$ {0, 1}η

n

LoadEK

KHEK := LoadEK
KHEK

TC Load(AK,KHEK)

AK,KHAK := {

Dec(AKpriv , EK
sk
priv), AKpub}

KHAK

TC StartAuthSession

fresh S
TC PolicyPCR(I)

hConf := hash(

PCRi, ∀ i ∈ I)
S := hash(CCPolicyPCR

|| I || hConf)
Sign(n,KHAK)

hPol := GetPolicy(KHAK)

σa := Sign(n,KHAK)

⇐⇒ S == hPol
σa

V F.state := Trusted ⇐⇒
VerifySignature(n, σa, AKpub)

Figure 3.6: Attestation by Proof

3.4 Experimental Performance Evaluation

We have also proceed in a full implementation and evaluation of the RAINBOW set of secure
remote attestation enablers in order to identify the overhead that this type of secure enrollment
process can add on top of the underlying networking mechanism. While this experimentation
is based on the benchmarking of both the Attestation by Proof and Attestation by Quote mech-
anisms, when running as standalone components, it provides us with a good starting point for
the next integration activities of the overall RAINBOW trust overlay mesh network for delivering
the high-level functionalities related to secure (edge and mesh) device identification and

RAINBOW D2.2 PU Page 21 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Table 3.2: Timings of integrity verification protocols (time in ms). Note that the hashing is done
without any secure hashing schemes and might be slower in practice.

Command Activity Mean 95% (low) 95% (high) Description

CreateAK Prepare 0.01 <0.01 0.01 Compute expected vPCR
Create 15.92 15.80 16.05 Create AK in T C
Verify 1.03 1.01 1.05 Verify certificate and key
Total 16.96 16.81 17.11

Update Prepare <0.01 <0.01 <0.01 Extend vPCR
Hash/Extend 1.42 1.35 1.49 Hash file(s) and extend PCR
Total 1.42 1.35 1.49

Quote Prepare 0.02 0.01 0.03 Create a nonce
Quote 8.67 8.56 8.78 Sign PCRs with EK
Verify 0.83 0.80 0.85 Verify quote and certificate
Total 9.51 9.37 9.65

Proof Prepare 0.01 <0.01 0.02 Create a nonce
Sign 10.83 10.76 10.89 Sign nonce
Verify 0.84 0.79 0.88 Verify signature
Total 11.67 11.56 11.79

integrity, data integrity and confidentiality, anonymity and resource integrity as described
in the overall framework reference architecture (see Deliverable D1.2 [21]).

Experimental Setup. Our testbed is deployed on a computer equipped with an Intel(R) Core(TM)
i7-8665U CPU @ 1.90-2.11GHz running the Windows 10 OS. The main goal of this setup is to
evaluate the potential overhead of using a TPM that will, in turn, allow us to assess the overall
protocol scalability towards providing verifiable integrity evidence. Therefore, we have opted out
of creating a true scale test environment with separate entities, but a single binary file containing
all components. To evaluate the performance of attestation trust extensions, we constructed the
protocols and tested them against IBM’s software TPM V1628 using the IBM TSS(Section 2.1.3).
Each experiment (protocol) is performed 1,000 times. Note that since we rely on a software TPM
as the RoT, of a device, we chose to create an attestation primary-key as an alternative to the EK
for key storage, which adds a small overhead each time the AK is used. Also, we chose to use an
ECC key as the EK, instead of an RSA-based EK. However, as long as the key is sequestered in
the TPM, either approach is secure.

Timings are gathered by executing the experiments for 1000 runs, calculating the mean and
standard deviation to acquire the 95th percentile.

Performance Results. Our experiments (Table 3.2) highlight the efficiency of our protocols. The
entire process of creating an AK takes no more than (approximately) 17 ms (on average), while
including the update of binary measurements still requires less than 20 ms (see Section 3.4.1 for
more details and a comparison to a HW-based TPM implementation). The enhanced attestation
schemes are also efficient (< 12 ms), however, without considering any possible network delay
that may be present when communicating the attestation data between the Prv and V rf . With
both supporting routines and attestation schemes being extremely lightweight, we can achieve
low-cost, rapid attestation capabilities and provide advanced trust assurance services without
consuming a lot of computational resources. Such capabilities not only ensure trust from the
perspective of the entire service graph chain but further facilitate bilateral trust assurance (even)
between different service graphs. In general, higher levels of trustworthiness result in more re-
sources being needed. That is why it is imperative for the attestation protocols to be lightweight
enough without, however, impeding on their accuracy and correctness. To better demonstrate the
achieved effectiveness, we use Eq. 3.1 to determine how fast we can detect binary manipulation.

RAINBOW D2.2 PU Page 22 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

In the worst-case scenario, where an Adv tampers with a binary just after an update, she will
remain undetected for at most 293.40 ms, if we utilize as little as 20% of the CPU time.

The ease of operating RAINBOW’s attestation protocols, including their efficiency, makes the
framework highly applicable to be integrated into large-scale networks. While - at this stage -
we did not take processing- or network-delay into consideration and only use the AK once, the
experiments show that the time of detection is in the order of seconds. In Figure 3.8, we further
see that even with 10% utilization, we can still detect a change after ≈ 1 second, making it
extremely difficult for an Adv to manipulate RAINBOW’s attestation protocols.

3.4.1 Timings and Benchmarks

In the context of RAINBOW, we do not consider Adv that can perform transient attacks whereby
alterations to binaries are only detectable for a short time. Thus, any alterations to binaries by
an Adv will be detected when the device is re-measured and attested, as shown in Figure 3.7.
The advantage of an Adv is defined as the time that she can remain undetected. If, for instance,
the Update of Measurements and Attestation by Quote protocols are executed immediately after
the attack, then we will be able to detect any incompliant configurations from the quote structure.
However, Attestation by Proof will inevitably take longer to complete since the creation of a new
AK must occur in-between the Update of Measurements and Attestation by Proof protocols. Let
td denote the time of detection (hence, a large td is desirable to Adv), u the time to execute the
update routine, c the time to execute the creation of a new AK, a the time to execute the attestation
routine, and n the number of device’s that, in consecutive order, conduct Attestation by Proof on
a specific device using a shared and verified AKpub of that device, respectively. We further use
the variable tCPU to specify the amount of CPU resources allocated to execute these routines,
e.g., for 20% utilization we have tCPU = 0.20. Using Eq. 3.1 we calculate the time until the Adv
is detected (td) (Figure 3.8). As we can see, the detection time (td) increases linearly with n (a)
but decreases as we allocate more resources, tcpu (b).

td =
2c+ a(1 + n) + u

tCPU
(3.1)

Figure 3.7: Visual representation of how long an Adv can go undetected.

Implementation Note. Writing protocols in terms of TPM calls requires reading and under-
standing the TPM 2.0 specification and this makes TPM development challenging and causes a
high-barrier of entry. While the TPM 2.0 specification was designed to be easily maintainable, it is
nevertheless challenging to read mainly due to its sheer size. It consists of over 1400 pages split
into four parts which not only cover the core specifications, but also numerous errata covering the
continuous development of the TPM specification. Therefore, a particular TPM will be based on
the core specification and all of the relevant errata which it implements.

HW-based TPM Timings. The timings for executing the individual TPM commands of the pre-
sented attestation protocols are presented in Tables 3.3 and 3.4, and are performed using IBM’s

RAINBOW D2.2 PU Page 23 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 3.8: (a) Changing the number of attestations each key has to do and its impact on the time
of detection (20% utilization) and (b) shows how different utilization of resources impact the time
of detection with one AK use.

Table 3.3: Mean time (in ms) of using SW- and
HW-TPM for updating measurements and cre-
ating a new AK.

Command SW HW

Update
TPM2 PCR Extend 0.44 6.09
Total 0.44 6.09

Create
TPM2 CreatePrimary 0.92 238.35
TPM2 Create 0.98 243.75
TPM2 Load 0.44 58.04
TPM2 Load 0.33 59.83
TPM2 CertifyCreation 5.18 123.13
TPM2 FlushContext 1.64 4.10
TPM2 FlushContext 1.60 3.69
TPM2 FlushContext 2.21 4.00
Total 13.3 734.89

Table 3.4: Mean time (in ms) of using SW- and
HW-TPM for Attestation by Quote and Proof.

Command SW HW

Quote
TPM2 CreatePrimary 3.36 244.96
TPM2 Load 1.57 51.69
TPM2 Quote 2.16 112.71
TPM2 FlushContext 0.93 3.71
TPM2 FlushContext 0.89 3.77
Total 8.91 416.84

Proof
TPM2 CreatePrimary 3.33 241.38
TPM2 Load 1.70 54.17
TPM2 StartAuthSession 1.38 6.72
TPM2 PolicyPCR 0.37 10.71
TPM2 Sign 3.06 95.36
TPM2 FlushContext 0.97 4.12
TPM2 FlushContext 0.91 4.98
Total 11.72 417.44

software (SW) TPM V1628 and the Infineon (HW) TPM 2.0 chip. The mean time is calculated
from repeating all experiments 1,000 times for the SW-TPM and 100 times for the HW-TPM. The
values reflect the time between executing a command in the IBM TSS [?] V1.5.0 and until receiv-
ing a response. The SW-TPM timings are much faster than those when using the HW-TPM. Even
though a hardware TPM has some degree of hardware accelerated cryptography, it still cannot
measure itself with a modern CPU, and is not designed to do so. Applying Eq. (3.1) on the HW-
TPM yields a time of detection as td = (2 · 734.89 ms+417.49 ms (1+ 1)+ 6.09 ms)/0.20 = 11.5
s, which is indeed larger than that for the SW-TPM. However, these values are somewhat mis-
leading since the host CPU’s utilization does not have any effect on the HW-TPM as it executes
the operations on the hardware chip itself. By evaluating the TPM command execution and ap-

RAINBOW D2.2 PU Page 24 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

plication timings, we can see that the most time-consuming operations are those executed on
the TPM, which is why the impact of the CPU utilization using an HW-TPM is significantly lower.
Removing this constraint from Eq. (3.1) gives us td = 2.310 s (excluding the host times, such as
verification, nonce generation, etc.). Additionally, the “create primary key” function is extremely
time-consuming, which is why it might be useful to load this AK from NV storage.

RAINBOW D2.2 PU Page 25 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 4

Privacy-aware Service Graph Chains using
RAINBOW Direct Anonymous Attestation

In order to provide novel implementations for fog-based environments, many challenges have to
be overcome with security and privacy being critical pillars; especially in the context of safety
applications where critical decisions are based on information collected by devices regarding their
status or surrounding events (e.g., Urban Mobility Use Case [24]).

Therefore, seeking to design successful secure and privacy-preserving fog-oriented architec-
tures, comprising of thousands of autonomous and intelligent fog and edge nodes, besides oper-
ational assurance - one has to cater for a number of properties like anonymity, pseudonymity,
unlinkability, and unobservability and the strict trust requirements of a wide variety of multi ven-
dor devices and platforms. The security, interoperability and connectivity in a dynamic network
of fog nodes, gateways, services and applications across operations technology and information
technology stakeholders requires strategic rethinking of policies and processes in the context of
cyber-security, privacy and trust establishment.

Towards this direction, in RAINBOW, we will employ advanced cryptographic primitives (namely
Direct Anonymous Attestation [19]) together with trusted computing techniques for facilitating
the strict privacy considerations encountered in a variety of emerging applications. For instance,
in the context of the Urban Mobility scenario - envisioned in RAINBOW - privacy is a key concern
since the involved vehicle transmissions can be used to infringe the user’s location privacy [52].
Many V2X applications rely on continuous and detailed location information, which if misused
(all exchanged messages can be eavesdropped within radio range) can lead to the extraction
of detailed location profiles of vehicles and path tracking [30]. Since there is usually a strong
correlation between a vehicle and its owner [33], location traces of vehicles have the potential to
reveal the movement and activities of their drivers. Two of the most prominent types of messages
that are exchanged in the context of V2X are known as Cooperative Awareness Messages (CAM)
and Decentralised Environmental Notification Messages (DENM) [28].

In the remaining of this chapter, we provide a detailed documentation of the enhanced DAA proto-
col that has been designed and implemented for providing strong privacy guarantees throughout
the entire operation of a fog-based ecosystem. Details on the basic building blocks, mode of
operation and workflow of actions are provided as well as a comprehensive mapping of the
TPM commands that need to be securely executed by the underlying TPM. While in its current
phase, this DAA block is positioned as a standalone component in the overall RAINBOW archi-
tecture [21], the end-goal is the integration of this enhanced DAA mechanism in the underlying
RAINBOW routing mechanism towards the provision of a secure overlay mesh network for

RAINBOW D2.2 PU Page 26 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

delivering the high-level functionalities related to secure (edge and mesh) device identifi-
cation and integrity, data integrity and confidentiality, anonymity and resource integrity

4.1 The Need for “Privacy-by-Design” In Fog-based Ecosys-
tems

Privacy requirements have been well documented in the European Telecommunications Stan-
dards Institute (ETSI) TS 102 941 [27], and the OpenFog Consortium standards highlighting the
following properties:

• Anonymity: ability of a fog/edge node to use a resource or service without disclosing its
identity.

• Pseudonymity: ability of a fog/edge node to use a resource or service without disclosing its
identity while still being accountable for that action.

• Unlinkability: ability of a fog/edge node to make multiple uses of resources or services
without others being able to link them together (i.e., infer mobility patterns).

• Unobservability: ability of a fog/edge node to use a resource or service without others,
especially third parties, being able to observe that the resource or service is being used.

In this context, the actual identity of the sender is not required for ensuring the trustworthi-
ness of a transmitted message. It rather suffices to verify the origin correctness; a message
has been sent by a valid “fog participant”. Indeed, since exchanged messages might contain
sensitive data, what is required is that certificates should not contain any identifying information
that could trace them back to a particular device or platform. In an attempt to address this chal-
lenge, intensive efforts in academia and industry, led to the proposal of PKI-based solutions [31]
with privacy-friendly authentication services through the use of short-term anonymous cre-
dentials, i.e., pseudonyms. The common denominator in such architectures is the existence of
trusted (centralized) infrastructure entities for the support of services such as authenticated node
registration, pseudonym provision, revocation, etc.

While it has been proven the security guarantees provided in such architectures, there are a
number of challenges inherent to PKIs when it comes to privacy, scalability, and operational
assurance [29]. In its core, the possibility of security breaches has the potential to seriously
weaken the technical security protection measures of PKIs, since in their current version the
assumption is on the existence of a number of centralized trusted entities. However collusion
or security incidents affecting certification authorities have grown more frequent in the recent
past [26], so the existence of a PKI architecture does not guarantee per se the enactment
of trust between the peers and additional measures are necessary to reinforce a scalable
community of trust [9].

Therefore, what is needed is to provide efficient, reliable and in timely and privacy-preserving
communications to all fog nodes and their embedded TPMs. The reliance on infrastruc-
ture entities within the overall architecture for such services raises questions towards a system’s
availability and scalability in the case of a technical fault or attack. In this context, RAINBOW
leverages anonymous credentials through the use of Direct Anonymous Attestation (DAA)
addressing all the aforementioned limitations, i.e., privacy, security, and accountability.

RAINBOW D2.2 PU Page 27 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

One of the biggest advantages of RAINBOW DAA scheme is its decentralized nature resulting
in shifting the trust from the back end infrastructure to the fog/edge nodes. Applying the DAA pro-
tocols results in the redundancy (and removal) of the PKI-based architecture: fog nodes can now
create their own pseudonyms, and DAA signatures are used to self-certify each such credential
that is verifiable by all verifiers. Furthermore, nodes have total control over their privacy, as no
trusted third-party is involved in the pseudonym creation phase. This means that it is infeasible
for any third-party to reveal the identity of another device assuring that pseudonym resolution is
not possible in our solution.

4.2 Direct Anonymous Attestation Building Blocks

DAA [16] is a platform authentication mechanism that enables the provision of privacy-preserving
and accountable authentication services. DAA is based on group signatures that give strong
anonymity guarantees. The key security and privacy properties of DAA are:

• User-controlled anonymity : Identity of user cannot be revealed from the signature.

• User-controlled linkability : User controls whether signatures can be linked.

• Non-frameability : Adversaries cannot produce signatures originating from a valid trusted
component.

• Correctness: Valid signatures are verifiable, and linkable, where needed.

A DAA scheme considers a set of Issuers, hosts, Trusted Components (TCs - TPMs in the con-
text of RAINBOW), and verifiers (Figure 4.2); the host and TC together form a trusted fog node.
The Issuer is a trusted third-party responsible for attesting and authorizing platforms to join the
network (through the execution of the previously described zero-touch configuration integrity ver-
ification process - Chapter 3). In the context of RAINBOW, the role of this entity is undertaken by
the Orchestrator (Orc). A verifier is any other system entity or trusted third-party that can verify a
platforms’ credentials in a privacy-preserving manner using DAA algorithms; without the need of
knowing the platform’s identity. The Elliptic-curve cryptography (ECC) based DAA is comprised
of five algorithms SETUP, JOIN, SIGN, VERIFY and LINK.

• SETUP - The system parameters must be chosen and the Issuer needs to generate its keys.
The system parameters and the Issuer’s public keys are then published and available to the
cluster and to anyone who needs to verify the validity of a signature.

• JOIN - A Host using a TC joins the group and obtains an Attestation Key Credential (AKC)
for an ECC-DAA key created by the TC. The key can then be used to anonymously sign a
message, or attest to data from this TC.

• SIGN - Using the ECC-DAA key, for a range of signing operations.

• VERIFY - Verifying a signature and returning true (valid) or false (invalid).

• LINK - Checking two signatures to see if they are linked and returning true (linked) or false
(un-linked).

RAINBOW D2.2 PU Page 28 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 4.1: Notation Used

A DAA scheme enables a signer to prove the possession of the issued credential C to a verifier
by providing a signature, which allows the verifier to authenticate the signer without revealing the
credential C and signer’s identity. In a nutshell, DAA is essentially a two-step process where,
firstly, the registration of a fog node executes and during this phase the device chooses a secret
key (SETUP). This secret key is stored in secure storage so that the host cannot have access
to it. Next the device talks to the issuer so that it can provide the necessary guarantees of its
validity (JOIN). The issuer then places a signature on the public key, producing the Attestation
Identity Credential (AIC) cre. The second step is to use this cre for anonymous attestations on
the platform (SIGN), using Zero-Knowledge Proofs [32]. These proofs convince a verifier that a
message is signed by some key that was certified by the issuer, without knowledge of the TC’s
DAA key or cre (VERIFY).

RAINBOW D2.2 PU Page 29 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

HOST

TC

SIGNER

ISSUER VERIFIER

(TC Manufacturer)

(Platform)

Req
ues

ts	m
emb

ersh
ip	fo

r

a	co
mm

itted
	TC

	key

1

2 Grants	attestation	key

credential	C

3

skT
Third party

Anonymous signature
on attestation m

4 Verify
signature

Claim signer's trustworthiness
without discovering signer's identity

Figure 4.2: An overview of the entities involved in a DAA protocol

4.3 RAINBOW DAA Scheme

In our RAINBOW DAA scheme, it is only the Orc that we assume as trusted; as aforementioned,
the orchestrator is responsible for authenticating fog nodes through the JOIN protocol. In
our context, fog nodes are the combination of a host, that is the normal computing platform
“normal world”, and a TPM that executes in the “secure world”; together they form the device
which we refer to from this point onwards as the fog node. We also have an additional role - this
of verifiers which are other fog nodes or third-party service, etc.

We have to highlight that our proposed solution assumes on-board TCs that support the function-
alities described in Chapter 2: (i) isolation: separate and protected from the host in the event of
compromise, (ii) protected execution: ensures the operation is executed and not interfered with,
and (ii) secure storage: storage which is only accessible by the TC if the platform is in a “good”
state.

Figure 4.3 defines the implementation of our RAINBOW DAA protocols. We describe each proto-
col execution by defining the responsibility of all system actors and separate the roles of the TPM
and host. This allows us to better reason against the required functionality of a TPM. The reader
is referred to Table 4.1 for fully expanded explanations of the notations contained below. This is a
high-level conceptual description of the workflow of actions - more details on the crypto operations
been performed and the TPM functionalities/commands leveraged are ascribed in Section 4.4.1.

4.3.1 Fog Node Registration

The first step for a node acquiring its certificates (after the correct execution of the Configuration
Integrity Verification, described in Chapter 3, towards the secure enrollment of only those nodes
that are at a “correct state”) consists of two phases: SETUPfor generation of keys and the en-
rollment phase to the Orc (JOIN). We assume that during manufacture time, the TPM will have
a unique DAASeed installed, a non-monotonic counter cnt, and the hardware will be endorsed
by the manufacturer through means of burning the endorsement key pair: skektc / pkektc into the
TPM. For the SETUPphase the Orc publishes its public key pkI and the security parameters KI .
A node’s TPM generates a DAA key pair: sktc / pktc using KI , and publishes its public key pktc.
The TPM then releases the public keys pkektc and pktc to the fog node.

The details of the JOINprotocol are shown in Figure 4.3. By the end of the protocol the newly
registered platform will have acquired a VID Certificate (cre) certifying that the node has a valid
TPM which has been enrolled with the Orc. To initiate the JOINprotocol, a node sends the Orc

RAINBOW D2.2 PU Page 30 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

JOIN: TC
 HOST
 ISSUER

skektc , pkektc pkektc , pktc pkektc , skI

sktc, pktc pkI

pkektc , pktc fresh n I

C C C = aenc(n I ‖ pktc, pkektc)

n I ‖ pktc n I ‖ pktc n I ‖ pktc cre = blindSign(pktc, skI)

fresh key

e = senc(cre, key)

d d, e d = aenc(key ‖ pktc, pkektc)

key ‖ pktc key store(cre)

CREATE: TC
 HOST

sktc cre

fresh r

fresh skps/pkps "create" ‖ ĉre ĉre := blind(cre, r)

fresh r′

pssig := DAASign(pkps, r
′, sktc) = (σ1 ‖ σ2 ‖ ĉre)

σ1 := Sign(pkps, sktc)

σ2 := blindSign("certified" ‖ pkps, r′, sktc)
psCerttc := (pkps ‖ pssig)

store(skps) psCerttc store(psCerttc)

SIGN / VERIFY: TC
 HOST
 VERIFIER

skps psCerttc pkI

mplain mplain := {|payload ‖ data |}

msign := Sign(mplain, skps) msign msg := {| mplain ‖ msign ‖ psCerttc |} msg DAAVerify(pssig, pkI)

store(pkps)

REVOKE: TC
 HOST
 RA

sktc, pkra cre pkI , pkps, psCerttc , skra
msg := {| "revoke" || pkps || reason |}skra

fresh r msg

verify(msg, pkra) ĉre,msg ĉre = blind(cre, r)

fresh r′

σrvk := DAASign(pkps, r, sktc) = (σra1 ‖ σra2 ‖ ĉre)
σra1 := Sign(pkps, sktc)

σra2 := blindSign("confirm" ‖ pkps, r′, sktc) σrvk σrvk σrvk eq(σ1, σ
ra
1 , true)

DAAVerify(σrvk, pkI)

Figure 4.3: High-level Overview of the RAINBOW DAA Protocol Interfaces.

its public key indicating it wants to join the network (Step 1). The Orc responds to the vehicle
with a fresh challenge C which only the valid TPM can open. The node then forwards C to its
TPM via a secure I/O (Step 2). The TPM opens the challenge, confirms its validity, and sends the
response to the host node, which in turn, responds to theOrc with the recovered data items (Step
3). The Orc verifies the received response, confirming that the vehicle possesses a valid TPM.
Following this verification, the Orc creates the credential cre, and a fresh symmetric session key.
The credential cre, encrypted with the session key, is sent to the node, along with an encryption
of key intended for the TPM, as e and d respectively in Step 4. Finally, the node uses the TPM
to decrypt d, recovering the key. The TPM verifies the validity of d and then releases key to the
node (step 5). The node can then decrypt e (using key) to recover the certificate cre. Finally, it

RAINBOW D2.2 PU Page 31 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

verifies cre using pkI and stores it for future use.

By the end of this protocol, if successful, the node is an authenticated and legitimate member
of the fog cluster, and ready to register to any of the provided services including the underlying
mesh networking stack (Chapter 6).

4.3.2 Anonymous Credentials Creation

The creation of pseudonyms (CREATEin Figure 4.3) lies within the fog nodes, allowing the shift of
trust from a third party to locally within the end-points. This is made possible by all nodes being
equipped with a TPM, that is responsible for generating the pseudonyms in an environment that
enables protected execution, isolation and secure storage.

Creating new pseudonyms for a nodes does not require any external network communication,
and all message exchanges in the CREATEprotocol take place over secure I/O between the host
and TPM. To initiate the creation process the host blinds the cre with freshly generated random
nonces, and sends a “create” request to the TPM with ĉre. Alternatively, the node can choose
not to “blind” its credential and create pseudonyms which are linkable. While this is bad practice,
it does demonstrate that anonymity, pseudonymity, unlinkability and unobservability are under
the control of the fog node (based on the policies already circulated by the Orc). Upon receipt
of the pseudonym creation request, the TPM creates a fresh pseudonym key pair skps/pkps and
fresh random r. Using the DAASign algorithm the TPM creates two signatures: σ1 - the public
pseudonym key signed with the DAA secret key sktc, and σ2 - a blind signature of the certified
pkps key; ensuring the generated pseudonyms are not linkable. σ1 is a “link token” which is
created for the purpose of revocation, discussed in Section 4.3.4. Once the pseudonym signature
is produced, pssig, the pseudonym certificate, psCerttc , is produced that is constructed from the
public pseudonym key pkps and the pseudonym signature. The TPM concludes by storing the
generated pseudonym secret key skps and returns the pseudonym certificate to the host for use
in networking communication.

By the end of this protocol a fog node can use its pseudonyms to communicate with the various
services, such that the use of services are anonymous, unlinkable and unobserverable; whilst
still being held accountable for its use of the services.

4.3.3 Network Communication

Through the use of DAA SIGN / VERIFYphases, secure and privacy-preserving exchange of mes-
sages are achieved by using the already generated pseudonyms. The following protocol details
how authenticated message exchanges between fog/edge nodes.

To initiate a communication, the node maye creates a message that wants to either broadcast or
unicast to other system nodes (Chapter 6). In our example, the node creates a plain unsigned
message, mplain, including binary data information. The TPM is given mplain and signs it using
the current pseudonym secret key, and responds to the node with a valid signature for mplain. The
node then constructs the complete message, msg, to broadcast (or unicast) to its surrounding
nodes belonging to the same cluster. msg is constructed from the plain message, the message
signature and the current pseudonym certificate psCerttc . The surrounding nodes (VERIFIER)
receive msg, and first verify that the contained psCerttc was created by a valid TPM that has been
authorised by the Orc. To achieve this the verifying node extracts pssig from the received psCerttc ,
and uses DAAVerify and the Orc’s public key pkI to confirm the pseudonym was created by a valid
TPM.

RAINBOW D2.2 PU Page 32 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

4.3.4 Revocation

As aforementioned, one of the most critical services in a fog-based ecosystem is revocation.
In our protocol (REVOKEin Figure 4.3), we demonstrate how this is achieved, using DAA, whilst
preserving privacy, and confirmation that the node was revoked. Revocation messages have
linkable signatures to guarantee the correct reception of a revocation command by the node in
question. Prior to the execution of this protocol, we assume a number of reports containing
a misbehaving node’s pseudonym have been issued, and the decision to revoke the node has
been made based on strong evidence.

The respective authority (can also be the Orc) initiates the REVOKEprotocol by creating a signed
revocation message msg using its secret key skra. It broadcasts msg containing the public
pseudonym key, pkps, that needs to be revoked. All nodes receive the revocation message since
the hosts are required to forward them to their TPMs, and furthermore they generate fresh random
nonces and blind the credential producing ĉre which is again forwarded to their TPMs. The TPM
recognises this message as a revocation request, and verifies that the pseudonym public key
was generated by the TPM and prepares to respond to the authority. The TPM generates some
fresh random r, and uses the DAASign algorithm to produce the revocation confirmation signatures
σra1 and σra2 . σra1 is a deterministic signature that is linkable with σ1 confirming the revocation is
designated for this node. Then, σra2 is a signed commitment to confirm that the pseudonym was
revoked. As a consequence of σra being produced, the TPM deletes all pseudonyms and its DAA
key pair sktc/pktc. The TPM responds to the node with the revocation confirmation σrvk, which
is then sent to the authority. Upon reception of the revocation confirmation, the authority verifies
that σra1 is the same signature as σ1 from the pseudonym certificate implying that the correct node
has revoked itself. The entire signature σrvk can be verified using DAAVerify as being signed by the
TPM that belongs to the misbehaving node.
By the end of this protocol, there are strong guarantees that the node in question has been
revoked without the need of any pseudonym resolution. The authority has verifiable evidence,
from the node, that it has performed the revocation enforced by the TPM. In the event of a node
revocation, it has to re-run the JOINprotocol before being able to re-join the fog cluster and acquire
new credentials.

4.4 TPM Commands Instantiation & State Diagrams

Based on the above description of the DAA phases and protocols, the main goal of integrating
such an advanced privacy-preserving mechanism in RAINBOW is for the: (i) data transfer pre-
serving anonymity and privacy, using the Direct Anonymous Attestation (DAA) functionality,
(ii) attestation of the correct state of fog nodes (on demand) during run-time, and (iii) the establish-
ment of a secure and anonymous communication channel between the fog nodes themselves or
with the Orc. Thus, the derived trust model captures the necessary requirements for the correct
execution of these services:

R1. Correctness: Valid DAA signatures are verifiable, and linkable, where needed. This also
requires the correct execution of the protocol even in the presence of an adversary having
compromised part of the host PLATFORM . For instance, only valid and trustworthy TPMs
can join the system by ensuring that the endorsed TPM keys have not been previously
compromised;

RAINBOW D2.2 PU Page 33 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

R2. User-controlled anonymity: Identity of the device cannot be revealed from the DAA signa-
ture. This means that an adversary who does not know the PLATFORM ′s private key
cannot link a signed message to the TPM of this platform;

R3. User-controlled linkability: Device control whether signatures can be linked. A device has
control over its DAA credential and can decide whether or not to “blind” it through the use
of a single or different basenames bsn;

R4. Non-frameability: Adversaries cannot produce signatures originating from a valid trusted
component.

Figure 4.4 depicts the state diagrams for the aforementioned functionalities (further elaborated
in Section 4.4.1): The first one denotes the correct execution of the core DAA phases, namely
the SETUP and JOIN phases (upper branch), for certifying the TPM used by a host platform
from the Orc, and the SIGN (or VERIFY) phases (lower branch) for signing/verifying message
digests, mi, originating from the fog nodes. The second diagram denotes the establishment
of a secure communication channel between multiple fog nodes capturing the current TLS key
establishment (e.g., to be replaced by an anonymous ephemeral key establishment scheme that
will be designed in the context of RAINBOW - Section 5) that can be anonymously signed by
the host PLATFORM using its DAA key. Finally, the third one denotes the attestation and
verification of the correct state of a fog node. Overall, the light green colour represents a state
of the host PLATFORM (and not the TPM itself), the light blue colour represents a state of the
Orc and the light grey colour represents a state of the TPM.

Figure 4.4: RAINBOW DAA State Diagrams

State Diagram of the DAA Protocol Execution (Figure 4.4 (a)):

Device Integrity: Integrity calculations of the applications installed on the TPM-equipped PLATFORM .
Applications need to be attested against a whitelist of allowed and trusted application in-

RAINBOW D2.2 PU Page 34 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

stances (Chapter 3). The Orc will be responsible for managing such whitelists in order to
determine whether the DAA key generated by the TPM of a PLATFORM is associated
to a good software configuration. This property will be achieved by the TPM that can se-
curely store the current system state in its Platform Configuration Registers (PCRs) and
it will allow certain crypto operations to be performed with the DAA key only if the current
state is the same as when the key was created.

Start Session: PLATFORM applications to start a session with the TPM in order to create
the DAA key and activate its credentials (SETUP and JOIN phases) and then execute a
range of signing/verification operations: SETUP: The system parameters must be chosen
and the ISSUER needs to generate its keys. These parameters and the ISSUER′S
public keys are then published and available to anyone who wants to verify the validity of a
signature. JOIN: a user PLATFORM using a TPM obtains an Attestation Key Credential
(from the ISSUER) for the DAA key create by the TPM.

Execution Integrity: Integrity of the execution of the TPM command flow by monitoring the
Trusted Software Stack (TSS); i.e., invocations made by what applications, command con-
figurations, parameters passed, etc. It reflects the continuous monitoring and attestation
of the low-level system and behavioral properties to be performed by RAINBOW secure
remote attestation enablers.

TPM Create: Creates a restricted key blob, in order to create the DAA key.

Activate Attestation Key Credential in JOIN Phase:

TPM Load: The TPM loads the created ECC −DAA key. This key must be fixed to this
TPM , fixed to this TPM ′s key hierarchy and restricted to sign only message digests
been created by itself (once data have been forward by the use PLATFORM hosting
the TPM).

TPM Activate Credential: Enables the association of a credential with an object (provided
by the ISSUER) in a way that ensures that the TPM has validates the provided
system parameters. In a nutshell, this TPM call is used to convince the ISSUER that
the ECC − DAA key that it has received, has been generated by a TPM whose
endorsement key has already been checked.

TLS key Establishment: Establishing a secure communication Channel from the Orc to
the PLATFORM .

TPM Sign: In the context of the JOIN protocol and in order to successfully complete the
TPM activate credential command, it is necessary to perform one TPM sign based on
the created DAA key.

The SIGN Operation:

TPM Load: The TPM loads the required keys for the signing operation

TPM Hash: Compute hash digests for the data bunches produced by the host PLATFORM
after being forwarded to the internal TPM . This operation provides the necessary
guarantees that the message digest to be later signed have been created by the TPM
itself. The results of the hash will be used in the signing operation that uses the re-
stricted DAA key and the ticket returned by this command can indicate that the hash
is safe to sign.

RAINBOW D2.2 PU Page 35 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

TPM Commit: After the attestation key certificate has been randomised, this command is
used for preparing the parameters for the subsequent signing operation. It basically
provides the required anonymity level by using either different or the same basename
for the signing.

TPM Sign: After the execution of all previous states, the DAAkey can now be used for any
signing operation.

4.4.1 TPM Commands Mapping to RAINBOW DAA

In what follows, we put forth the detailed mapping of the underlying TPM commands (Sec-
tion 2.1.3) that need to be executed per DAA phase and workflow of actions as described in Sec-
tion 4.3. This provides a detailed overview of the DAA implementation that has been performed
in the context of RAINBOW and will be integrated in the underlying CJDNS routing mechanism
towards the creation of the overall RAINBOW trust overlay mesh network (Chapter 6).

Figure 4.5: DAA Initiating the JOIN Phase (SETUP)

RAINBOW D2.2 PU Page 36 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 4.6: DAA Completing the JOIN Phase

Figure 4.7: DAA Key Creation

RAINBOW D2.2 PU Page 37 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 4.8: DAA SIGN Phase

Figure 4.9: DAA VERIFY Phase & DAA Node Quote

RAINBOW D2.2 PU Page 38 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 5

Anonymous Secure Channel
Establishment

As described before, Direct Anonymous Attestation is an anonymous digital signature mecha-
nism that allows for secure platform authentication and privacy-preserving communication.
However, one of the main challenges in the integration of this DAA protocol, as part of the overall
RAINBOW mesh networking stack (Chapter 6), is the assumption of the existence of a se-
cure communication channel during the SETUP and JOIN phases. This basically puts a
significant constraint to the fog/edge node enrollment process since it needs to execute over a
secure channel for the DAA and Attestation Keys certification as well as the secure exchange of
the attestation policies needed by the configuration integrity verification scheme (Chapter 3).

Compounding this issue, in RAINBOW we are planning to enhance this DAA protocol and try
to solve the assumption that the Signer and the Issuer have established an one-way authentic
channel [17], i.e., anonymous and secure exchange of the parameters for the pairings that are
executed for the creation of the ECC key, and the activate credentials step.

5.1 On Using TLS keys: Benefits are Real, but so Are Draw-
backs

One obvious solution would be the establisment and usage of TLS communication channels.
Transport Layer Security, previously called Secure Socket Layer, is a cryptographic protocol tai-
lored to ensure security, data integrity, trustworthiness, malware prevention and granular control
of transmitted data over the the Internet. In short, it provides authentication, confidentiality, and
integrity. The newest version is TLS 1.3 [41]. TLS 1.3 starts with a key exchange phase where
the client and the server choose a random number r (256 bits fresh nonce), a list of favored sym-
metric cipher-suites, and an ephemeral (EC)DH private key. The private key belongs to one TLS
DH group. The client is allowed to send several keys and the server takes up the responsibility
to pick the group to continue. After this phase the keying material, cryptographic parameter,
and a encrypted channel is established.

The next phase is the authentication phase. The server sends its certificate (X.509), with ap-
propriate credentials/tokens that can be used for its efficient verification (signature over the tran-
script of the entire handshake messages using the private key), encrypts the extensions and
terminates (HMAC over the transcript and the derived key). The client replies with “Secure ACK”
to the server. All messages in the subsequent communication are now protected by AEAD with
the derived key; this constitutes the third phase [41].

RAINBOW D2.2 PU Page 39 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

As with almost every protocol, TLS has some drawbacks when it comes to its applicability to
various application domains other than HTTP and even with HTTP. Most noteworthy are high
latency, Men in the Middle (MiM) Attacks, network complexity, platform support, and im-
plementation costs when using a certificate that is not free available. Due to the widespread
of TLS, it is a common attack surface to break the integrity and security. Here, ordinary attacks
are Ciphersuite rollback attack [48], change chipher spec dropping attack in [48], version rollback
attack [48], RSA-based sessions attack [36], adaptive chosen ciphertext attack on PKCS#1 [15],
timing attacks [39], Cross-protocol attack based on ECC key exchange [37], SKIP-TLS attack [14],
Factoring Attack on RSA-EXPORT Keys attack [1], Logjam attack [7], etc.

5.2 Key Exchange with Anonymous Authentication

In RAINBOW, our protocol aims to be more lightweight than TLS as well as provide different levels
of device- or user-controlled anonymity. We are using an ephemeral/static ECDH key agree-
ment protocol with anonymous authentication between a Prover (P) and Verifier (V). This
is based on the notation from Chen et al. [20] which also leverages the cryptographic primitives
used in the DAA protocol.

The Prover has a Camenisch-Lysyanskaya credential [18] and a private key. She randomizes
the credential and sends it to the Verifier who in turn verifies the randomized points. The Verifier
then calculates a random point and the shared secret which is then sent back to the Prover. This
parameter is subsequently used for calculating the same shared secret as the Verifier.

Both parties have now agreed on a common shared secret which can be used for deriving sym-
metric session keys KMAC, i.e, after receiving a message with KMAC integrity from the Prover
(P), the Verifier (F) can assume that P has the private key belonging to the ticket.

An early draft of this described protocol is shown in figure 5.11. On a successful run of this
key agreement process, both parties know a common shared secret but they are not aware of
any other identifying information of the other entity; thus, achieving anonymous node authen-
tication which is a core requirement in fog-based environments and especially in safety-critical
applications as the ones (for example) envisaged in the defined use cases (e.g., Urban Mobility).
This property will allow the (on-demand) privacy-preserving enrollment of the devices in a
fog cluster, thus, leading to an enhanced DAA JOIN phases where a node (together with the
underlying TPM) can verify the validity of its root of trust and unique device identity, to the Orc,
without revealing the actual identity of the attached TPM (i.e., certification of endorsement key in
a privacy-preserving manner). Furthermore, a third party (e.g. an attacker) can neither learn the
shared secret, nor information on the identity of the parties.

The proposed scheme is expected to offer a number of benefits, such as no dedicated HW-TPM
is required, can be implemented in IoT Devices that offer interfaces that are not compatible with
trusted components (e.g., Java card), improved performance and privacy in relation to TLS.

5.3 Research plan for Establishing Ephemeral Keys with Diffie-
Hellman Key Agreement Protocol

The security mechanisms proposed for the RAINBOW platform are of different degrees of matu-
rity. On one hand, TPMs are well-established with a large research body and a number of com-

1The finalization of the concrete models and implementation aspects will be provided in the context of D2.4

RAINBOW D2.2 PU Page 40 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 5.1: ADHKE - Anonymous Diffie-Hellman Key Exchange

mercial vendors offering such devices and solutions. On the other hand, the proposed Ephemeral
Diffie-Hellman Key Agreement Protocol is a research proposal by IFAT which is at an early stage,
but well-worth being examined in the course of RAINBOW.

For the automated, anonymous establishment of DH-Keys in RAINBOW, the following design and
implementation plan will be followed:

1. Establishment of the mathematical scheme in detail, e.g., definition of protocol roles and ac-
tions, pre-conditions and security claims and assumptions. Similar to the models that have
already been compiled for the RAINBOW attestation enablers presented in the previous
chapters.

2. Evaluation of the protocol axioms, security analysis and discussion in the RAINBOW threat
model.

3. Implementation of the scheme within the RAINBOW-configured Raspberry Pi platforms as
a proof-of-concept. The first version will be based on the DAA cryptographic primitives.

4. Classification of the resource and performance measurements coupled with a detailed eval-
uation.

5. Study of the applicability of hardware-based cryptography accelerators.

6. Integration in the RAINBOW demonstrator.

7. Further research on the extension of the basic scheme towards a a direct pseudonymous
key agreement protocol and a direct pseudonymous encryption/decryption scheme.

Considering the early stage of the protocol, the above mechanism will be instantiated in the
second version of the RAINBOW security and trust enablers. The above tasks will documented
in D2.5.

As contingency plan, the RAINBOW middleware may fall back to conventional TLS based key
agreement protocols, which might incur a performance overhead over the proposed protocol.

RAINBOW D2.2 PU Page 41 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 6

Integration of CJDNS Protocol in the
RAINBOW Stack

In what follows, we present the underpinnings of the CJDNS routing mechanism that is lever-
aged (and enhanced) by RAINBOW to act as an umbrella layer that will facilitate the secure node
interaction based on all the aforementioned secure enrollment, attestation and system assurance
protocols. We have to note that in this deliverable the focus is on presenting the logistics, mode
of operation, and workflow of actions of the CJDNS protocol and not the complete RAINBOW
version with all the TPM-based security components integrated; this will be described in D2.4.

6.1 The Necessity of Mesh Networking in RAINBOW

The deployment of wireless fog nodes in an uncontrolled manner (without supervision entities)
raises many functional requirements as far as connectivity is concerned. On the one hand, wire-
less nodes formulate temporal connections with its adjacents. In addition, nodes must route
packets to each other without relying on static routing tables and fixed network subnets. In
other words, the networking environment per se is dynamic and uncontrolled. Each node that
enters a wireless fog network must be addressable. It goes without saying that in fixed networks
the addressing-problem is solved either with static configuration or through auto-configuration
that is mandated by a DHCP server.

In mesh networks, none of these addressing schemes are applicable. The lack of static subnet-
ting makes it impossible to bind a specific IPv4/IPv6 to a node since a node may participate
(based on its mobility pattern) in many subnets. In addition, even if a node decides by itself
an IP address, it has no guarantees that its address will not suffer from collision during an
opportunistic encounter with another node.

Beyond the problem of addressing, the problem of routing is even more intense. More specif-
ically, the global internet expansion relies on well established protocols (e.g. BGP) that can
route a packet from one node to another using hierarchical routing schemes that logically inter-
connect various Autonomous Systems (ASs). Hence, the “primitive” functions of routing such
as path establishment, acknowledge of delivery etc. are considered granted. However, in mesh
networks, paths cannot be statically computed and stored beforehand due to the dynamicity of
the environment.

Finally, the problem of trustworthiness of a node that joins a mesh environment is prominent. A
node that joins an “overlay” may act as a curious interceptor of packets that are routed through
this node. Hence, it goes without saying that all aspects of a node (i.e. running applications,

RAINBOW D2.2 PU Page 42 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

operating system, firmware) should provide integrity evidence in order to be immune on several
cyber attacks. In non-fog deployment, several of the attack vectors that we want to eliminate do
exist, however someone could claim that a node is joining a network in a supervised manner and
as such several pre deployment integrity checks can be performed (although, theoretically, these
checks do not provide strong runtime integrity guarantees).

In the frame of RAINBOW, unambiguous addressing, reachability and trust are in the epicen-
ter of the zero-touch-configuration requirements. In other words, the framework should pro-
vide guarantees that a node will be able to automatically participate in a dynamic routing scheme
in order to expose/advertise its computational resources and participate in analytics processes.
The RAINBOW centralized controller should be able to “pull” instrumentation-measurements and
as such the connectivity of the controllers with the nodes should be considered granted. To do
so, a forked version of an existing mesh-routing stack will be delivered. The stack that will be
extended is CJDNS which will be analyzed below.

6.2 Fundamentals of CJDNS

CJDNS is a mesh protocol that solves out of the box issues such as global addressing and
connectivity. This means that any CJDNS-enabled node can interconnect with any other CJDNS
node automatically, without central authority or control. Moreover, all CJDNS-enabled networks
(hereinafter addressed as meshnets) are compatible by their very nature. In fact, there is really
only ever one single global CJDNS meshnet, even if some parts of it are not linked to some
others. The moment they are linked, they will function as one. Furthermore, CJDNS also
includes secure end-to-end encryption built in to the protocol at the very lowest levels. In fact,
the encryption is part of what allows for the global distributed addressing. When a new CJDNS
node is set up, a cryptographic key pair is generated and the node’s IP address is derived
from that key. Any communication to the node is automatically encrypted with that key, and
communications with any other IP address can be cryptographically verified as secure and
genuine by comparing the keys used to the address itself. What this all means is that nobody
on the meshnet can see your private communications except for you and the node you are actually
communicating with.

The distribution and management of such cryptographic keys and certificates is achieved through
the use of appropriate Public Key Infrastructures (PKIs). While intensive research efforts have
proven the security guarantees provided in such architectures, there are a number of challenges
inherent to PKIs (and, thus, CJDNS) when it comes to privacy (no privacy requirements are
currently been considered by the CJDNC mesh networking stack), scalability, and operational
assurance [29]. In its core, the possibility of security breaches has the potential to seriously
weaken the technical security protection measures of CJDNS, since in its current version the
assumption is on the existence of a number of centralized trusted entities. However collusion
or security incidents affecting certification authorities have grown more frequent in the recent
past [26], so the existence of a PKI architecture does not guarantee per se the enactment of trust
between the peers and additional measures are necessary to reinforce a scalable community of
trust [9].

Another interesting feature of CJDNS is it’s efficient routing. Because it’s designed to have
lower resource requirements (primarily memory) than traditional internet routing, CJDNS uses
a system of routing that minimizes the amount of information a router needs to do its job. A
side benefit of this is that no individual node knows any more about who you are communicating

RAINBOW D2.2 PU Page 43 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

with then it absolutely needs to, which generally means it only knows what the next hop is
along the path, not the final destination. This further enhances privacy, beyond what is even
possible on the internet without additional specialized tools like Tor. It should be clarified, though,
that CJDNS does not offer actual anonymity anywhere near the level that Tor does, nor is it
intended too. It does, however, offer just enough to make mass surveillance impractical, while not
sacrificing performance like Tor does.

It should be noted that CJDNS is a pure “Layer 3” protocol that runs directly on top of the
MAC layer, intended as a replacement for the standard TCP/IP protocol used in today’s net-
work and internet connectivity. It is compatible with plain direct ethernet or ad-hoc wireless
connection. It actually implements TCP/IP on top of itself and offers a standard IPv6 interface
to applications. In other words, existing layer-7 applications (as the ones deployed by RAIN-
BOW) can work without modification, provided they support IPv6 since it does not rely on any
other meshnet or internetworking protocols to function.

6.3 Layering of CJDNS

CJDNS is made of three major components which are tightly integrated together (see Fig-
ure 6.1). There is a switch, a router, and a CryptoAuth module. With total disregard for the
OSI layers, each module is inherently dependent on both of the others. The router cannot func-
tion without routing in a small world which is made possible by the switch, the switch is blind and
dumb without the router to command it, and without the router and switch, the CryptoAuth has
nothing to protect.

6.3.1 The Switch Component

The switch design is unlike an IP or Ethernet router, it doesn’t need to have knowledge of the
globally unique endpoints in the network. Like ATM switching, the packet header is altered
at every hop and the reverse path can be derived at the end point or at any point along the
path but unlike ATM, the switch does not need to store active connections and there is no
connection setup.

In order to optimise the protocol description let us provide some definitions that we be used during
the overall description:

• Interface: A point-to-point link to another cjdns switch. This may be emulated by Ethernet
frames, UDP packets or other means.

• Self Interface: A special Interface in each switch. Packets sent for this interface are in-
tended for the node which this switch is a part of. Upon reaching the ultimate hop in its
path, a packet is sent through the Self Interface so it can be handled by the next layer in the
node.

• Director: A binary codeword of arbitrary size which when received by the switch will direct
it to send the packet down a given Interface.

• Route Label: An ordered set of Directors that describe a path through the network.

• Encoding Scheme: The method by which a switch converts one of its internal Interface ID
(EG: array index) to a Director and converts a Director back to its internal representation.

RAINBOW D2.2 PU Page 44 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Figure 6.1: Layering of the CJDNS Stack

Encoding schemes may be either fixed width or variable width but in the case of variable
width, the width must be self-describing as the Directors are concatenated in the Route
Label without any kind of boundary markers.

RAINBOW D2.2 PU Page 45 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

• Encoding Form: A single representation form for encoding of a Director. For a given
Encoding Form, there is only one possible way to represent a Director for a given Interface.
A variable width Encoding Scheme will have multiple Encoding Forms while a fixed width
Encoding Scheme will have only one.

• Director Prefix: For switches which implement variable width encoding, the least signifi-
cant bits of the Director is called the Director Prefix and is used to determine the width of the
Director. It should be clarified, that because the Route Label is read from least significant
bit to most significant bit, the Director Prefix is actually the bits furthest to the right of the
Director.

Now let us examine an indicative packet switching flow. When a packet comes into the switch,
the switch uses its Encoding Scheme to read the least significant bits of the Route Label in
order to determine the Director and thus the Interface to send the packet down. The Route Label
is shifted to the right by the number of bits in the Director, effectively removing the Director and
exposing the Director belonging to the next switch in the path. Before sending the packet,
the switch uses its Encoding Scheme to craft a Director representing the Interface which the
packet came from, does a bitwise reversal of this Director and places it in the empty space at the
left of the Route Label which was exposed by the previous bit shift. In this way, the switches build
a mirror image of the return Label allowing the endpoint, or any hop along the path, to derive the
return path by simple bitwise reversal without any knowledge of the Encoding Schemes used by
other nodes.

6.3.2 The Router Component

A router has 3 functions: a) it periodically searches for new nodes, b) it responds to node
searches, and c) it forwards packets. When a router responds to a search, it responds with
nodes which it thinks will get closer to the destination. The responses must not have addresses
which are, in address space distance, further from the responding node than the search
target, and they must not have routes which begin with the same interface as the route to the
querying node. These two simple rules provide that no search will ever go in circles and
no route will ever go down an interface, only to be bounced back. While the second rule
can only be enforced by the honor system, querying nodes MUST double check the first rule.
The node doing the searching adds the newly discovered nodes to their routing table and to the
search, then continues the search by asking them.

Upon receiving a search response containing one’s own address, a node should purge all
entries from its table whose routes begin with that route. This will control the proliferation of
redundant routes. The “address space distance” between any two given addresses is defined
as the result of the two addresses XOR’d against one another, rotated 64 bits, then interpreted
as a big endian integer. The so called ”XOR metric” was pioneered in the work on Kademlia
DHT [38] system and is used to forward a packet to someone who probably knows the whole
route to the destination. The 64 bit rotation of the result is used to improve performance where
the first bits of the address is fixed to avoid collisions in the IPv6 space.

Adding nodes to the routing table from search responses is done by splicing the route to the
node which was asked with the route to the node in the response, yielding a route to the final
destination through them. Routers choose the node to forward a packet to in a similar way
to how they answer search queries. They select nodes from their routing table except in this
case the selection contains only one node. The packet is sent through the CryptoAuth session

RAINBOW D2.2 PU Page 46 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

corresponding to this node and the label for getting to it is applied to the packet before sending
to the switch. The ”search target” for forwarding a packet is the IPv6 destination address of the
packet.

6.3.3 The CryptoAuth Component

The CryptoAuth is a mechanism for wrapping interfaces, i.e., it is provided with an interface
and optionally a key, and it provides a new interface which allows to send packets to some-
one who has that key. Like the rest of CJDNS, it is designed to function with best effort data
transit. The CryptoAuth handshake is based on piggybacking headers on top of regular data
packets and while the traffic in handshake packets is encrypted and authenticated, it is not se-
cure against replay attacks and has no forward secrecy if the private key is compromised.
The CryptoAuth header adds takes 120 bytes of overhead to the packet.
There are 5 types of CryptoAuth headers:

1. Connect-To-Me header which is used to start a session without knowing the other node’s
key. If ”Session State” is equal to the bitwise complement of zero, the sender is requesting
that the recipient begins a connection with him, this is done in cases when the initiator of
the connection does not know the key for the recipient. If the entire header is not present
the recipient must drop the packet silently, the only field which is read in the packet is the
”Permanent Public Key” field, all others SHOULD be ignored, specifically, content must
not be passed on because it cannot be authenticated. The recipient of such a packet
should send back a ”hello” packet if there is no established connection. If there is already a
connection over the interface, the recipient should not respond but may allow the connection
to time out faster.

2. Hello Packet header which is the first message in the beginning of a session. If the ”Ses-
sion State” field is equal to zero or one, the packet is a Hello Packet or a repeated Hello
Packet. If no connection is present, one may be established and the recipient may send a
Key Packet in response but it is recommended that he wait until he has data to send first. A
node who has sent a Hello Packet, has gotten no response and now wishes to send more
data must send that data as more (repeat) Hello Packets. The temporary public key and
the content are encrypted and authenticated using the permanent public keys of the two
nodes and ”Random Nonce” in the header. The content and temporary key is encrypted
and authenticated using curve25519-poly1305-salsa20 function, using the shared secret
computed as described in the Authentication field’s section.

3. Key Packet header which is the second message in a session. If the ”Session State”
field is equal to two or three, the packet is a Key Packet. Key Packets are responses to
Hello Packets and like Hello Packets, they contain a temporary public key encrypted and
authenticated along with the data. Once a node receives a Key Packet it may begin sending
data packets. A node who has received a Hello Packet, sent a Key Packet, gotten no further
response, and now wishes to send more data MUST send that data as more (repeat) key
packets.

4. Data Packet header- A traffic packet with Poly13051 authentication: The Data Packet is the
default data packet. The first 4 bytes are used as the nonce, in this case it is a 24 byte
nonce and curve25519-poly1305-salsa20 is used to encrypt and decrypt the data, using

1https://cr.yp.to/mac.html

RAINBOW D2.2 PU Page 47 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

the shared secret computed using one peer’s temporary public key and the other peer’s
temporary secret key (both roles are symmetrical and produce the same shared secret).

5. Replay Protector header that safeguards a session: The replay protector is a feature cjdns
implementations provide. It is however not part of the protocol itself.

As described in Chapter 7, the end goal is to enhance this workflow of actions and CryptoAuth
component, with the integration of the DAA mechanism (Chapter 4) so as to enable enhanced
operational assurance and privacy-preserving communication between fog nodes. This is consid-
ered as one of the main goals towards “security and privacy by design” solutions, including all
methods, techniques, and tools that aim at enforcing security and privacy at software and system
level from the conception and guaranteeing the validity of these properties.

6.4 Cross-Component Packet Processing

The journey of a packet begins at the user interface device (TUN or similar). The user sends an
IPv6 packet which comes in to the TUN device and enters the engine, it is checked to make sure
its source and destination addresses are valid and then a router lookup is made on the destination
address. cjdns addresses are the first 16 bytes of the SHA-512 of the SHA-512 of the public key.
All addresses must begin with the byte 0xFC otherwise they are invalid, generating a key is
done by brute force key generation until the result of the double SHA-512 begins with 0xFC.

After the router lookup, the node compares the destination address to the address of the
next router, if they are the same, the inner layer of encryption is skipped. Assuming they are
different, the IPv6 header is copied to a safe place and a CryptoAuth session is selected for the
destination address, or created if there is none, and the packet content is passed through it. The
IPv6 header is re-applied on top of the CryptoAuth header for the content, the packet length
field in the IPv6 header is notably not altered to reflect the headers which are now under it.

The packet is now ready to send to the selected router. For sending the packet to the router, a
CryptoAuth session is selected for the router’s address and the packet, from IPv6 header
down, is passed through it. A switch header is applied to the resulting encrypted structure and
it is sent down to the switch for routing.

The switch takes the packet and sends it to a network module which uses yet another Cryp-
toAuth session to encipher and authenticate the packet from the switch header down. The
resulting data is packaged in a network packet and sent to the switch at the next node. Upon
receiving the packet, the next node sends the packet through its CryptoAuth session thus
revealing the switch header and it sends the packet to its switch. The switch most likely will
send the packet out to another endpoint as per the dictate of the packet label but may send it to
its router, eventually the node for which the packet is destined will receive it.

The router, upon receiving the packet will examine it to see if it appears to be a CryptoAuth
Connect To Me packet, Hello packet, or Key packet. If it is one of these, it will insert the IPv6
address, as derived from the public key in the header, into a hashtable so it can be looked up by
the switch label. Otherwise it will do a lookup. If the Address cannot be found in its hashtable,
it will try asking the router if it knows of a node by that label and if all fails, the packet will be
dropped.

From the IPv6 address, it will lookup the CryptoAuth session or create one if necessary, then
pass the opaque data through the CryptoAuth session to get the decrypted IPv6 header. If the

RAINBOW D2.2 PU Page 48 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

source address for the packet is the same as the double SHA-512 of the public key for the router
from which it came, it’s assumed to have no inner layer of encryption and it is written to the TUN
device as it is. If its source address is different, it is passed back through a CryptoAuth session
as selected based on the source IPv6 address. The IPv6 header is then moved up to meet the
content (into the place where the CryptoAuth header had been) and the final packet is written out
to the TUN device.

Figure 6.2: Static Configuration of Trusted Peer

6.5 Admission Control

Up to now it should be absolutely clear that CJDNS, can support, functionally, any high-level
application (layer 7) that is compatible with traditional IPv6 sockets. However, the admission to
the network can be separated into two distinct modalities which are Layer-3 admission and
Layer-2 admission. We will shed light to both of these modalities in order to provide insight of
the engineering that has to be performed in the frame of RAINBOW.
Layer-3 admission implies that one node that aims to join an overlay network has to explicitly
declare a trusted node, which means that an “offline” exchange containing a public-key
and a peer password must be performed. It is prominent, that both parties (i.e. peers) have to
update their configuration with a node-config as depicted in Figure 6.2.

Figure 6.3: Blink Acceptance Configuration

RAINBOW D2.2 PU Page 49 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

It could be argued that this option suffers from severe scalability issues. I.e. it cannot scale in
large deployments since it requires static/manual configuration at the peer level. However, in the
frame of RAINBOW layer 3 admission is not important since it is applied only to stationary nodes
(Data Center resources, centralized cluster-heads etc.).

Layer-2 admission implies that two nodes that are in physical proximity to each other can self-
pair. The way this is performed in the current version is through a “blind acceptance mechanism”
(an indicative blind acceptance configuration is presented on Figure 6.3). According to this mech-
anism some nodes of an existing network act as pairing-acceptor, i.e., they are configured to
accept Layer-2 beacons from nodes that are not part of the network; but they wish to join.

On the other hand, nodes that wish to join are configured to emit/solicitate in a flooding man-
ner pairing requests in order for pairing acceptors to receive them. Upon reception of pairing
request an acceptor is initiating a key-exchange protocol. Ultimately, the two nodes exchange
their public keys and create mutual authentication credentials that is blindly appended to their
configuration. This configuration is used to trigger CryptoAuth sessions which have been exten-
sively analyzed above. The blind acceptance protocol of CJDNS will be heavily engineered
in order a) to rely on strong trust anchors (e.g. TPM) and b) to be complemented by an
attestation process in order to leverage the security guarantees.

RAINBOW D2.2 PU Page 50 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 7

Towards Secure & Privacy-Preserving
Overlay Mesh Networking

Based on the aforementioned (decentralized) security and privacy anchors, the last crucial step
for fulfilling the main vision of RAINBOW on establishing a trusted fog computing archi-
tecture, is the integration of all these trusted computing extensions towards the establishment
and management of trust-aware service graph chains. In this context, the communication over
the continuum from edge devices to fog nodes and backend cloud systems must support secure
interactions between all participating entities in order to establish service-specific “fog/edge
node communities of trust”.

To do so, as has been described previously, RAINBOW is leveraging advanced cryptographic
primitives (Direct Anonymous Attestation (Chapter 4) for privacy) and enhanced remote attestation
(Chapter 3) for security and operational assurance. At a conceptual level, the goal is to enable
fog/edge entities to establish and maintain trust during the entire system life-cycle. This stems
from establishing roots of trust in components (by leveraging the attached TPM), and using
these roots of trust to establish and maintain trust relationships.

However, in the road towards the establishment of such trust-aware SGCs, fog/edge node inter-
action is a challenge by itself since the target environment is dynamic and uncontrolled (Sec-
tion 6.1). More specifically, a RAINBOW deployment consists of nodes that formulate temporal
connections. In addition, nodes must route packets to each other without relying on static routing
tables and fixed network subnets. On top of that, there are two additional crucial constraints that
need to be taken into consideration. The first is the lack of a network addressing scheme and
the second is the establishment of trust among the nodes that participate in the fog deployment
towards the creation of “communities of trusted devices” that can enable the secure community
communications and can then be used for the trusted deployment of the envisioned services.

Addressing these challenges lies in the heart of RAINBOW towards the provision of a secure
overlay mesh network for delivering the high-level functionalities related to secure (edge
and mesh) device identification and integrity, data integrity and confidentiality, anonymity
and resource integrity as described in the overall framework reference architecture (see De-
liverable D1.2 [21]). In what follows, we provide an overview of the conceptual architecture and
workflow of actions - of the entire RAINBOW trust overlay mesh network - that will merge all the
previously described trust extensions, in an enhanced CJDNS networking stack, and that will be
described in the context of Deliverables D2.3 and D2.4.

RAINBOW D2.2 PU Page 51 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

7.1 Design Choices & Benefits

The integration of trusted computing technologies into the fog-based ecosystem allows for the
establishment of much stronger end-to-end chains of trust that can be used according to the
needs of all involved parties. The primary benefits of such a decentralized solution are in terms
of security, privacy and scalability.

Figure 7.1 depicts an abstract description of all internal building blocks and interfaces of the
RAINBOW endgoal when it comes to secure overlay mesh networking. As it can be seen, the
initial step (Step 0) is to enable the secure enrollment of the hardware and perform a Zero-
Touch Configuration to each of the fog participants and the belonging IoT devices. After the
established enrollment and setup phase, the Orchestrator (Orc) initiates the privacy configuration
for each participant through the establishment of respective DAA primitives (Step 1). Then, the
fog nodes and IoT devices are capable of establishing an anonymous secure channel (Step 2)
and authenticate themselves with privacy protection (Step 33). If these steps are successfully
performed, the devices are able to join the mesh network (Step 4) and they are allowed to
interact with each other in the system with the registered services from the RAINBOW platform
and can enforce a secure CJDNS routing (Step 5).

Figure 7.1: System components interaction within RAINBOW

One of the biggest advantages of such a decentralized approach is its scalability, as trust is
shifted from the back-end infrastructure to the fog nodes and IoT edge devices. Applying
the integrity verification and DAA protocols results in the redundancy (and removal) of the most
of the infrastructure entities currently assumed in traidtional PKI-based architectures: edge de-
vices can now create their own pseudonyms, and DAA signatures are used to self-certify each
such credential that is verifiable by all verifiers. Furthermore, nodes have total control over their
privacy, as no trusted third-party is involved in the creation phase of the short-term anonymous
credentials. This means that it is infeasible for any third-party to reveal the identity of another
node assuring that identity resolution is not possible in such a solution.

Analyzing the requirements specified in Section 4.1, it is clear that all necessary properties are
achieved with the addition of security and user-controlled privacy. The anonymity, pseudonymity
and unobservability properties are built into DAA’s algorithms, JOIN and SIGN / VERIFY by using
anonymous digital signatures. Therefore, third-parties cannot identify and link subsequent service

RAINBOW D2.2 PU Page 52 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

requests originating from the same fog node. This is also true in the presence of colluding third-
parties and other infrastructure entities. The JOIN protocol is intentionally not privacy-preserving
as the Orc needs to be aware of the node to be authenticated. However, successful completion
of the protocol results in the node solely owning a DAA credential.

Unlinkability (and/or different levels of vehicle linkability) is controlled by the node through the
DAA SIGN / VERIFY phases. A node has control over its DAA credential, and can decide whether
or not to “blind” it, thus, producing pseudonyms (and revocation) that are linkable. The proposed
approach provides privacy-preserving linkability via DAA deterministic signatures, where the use
of a pseudonym is unlinkable to any other pseudonyms owned by a node. This property is of par-
ticular interest to fog-based services as nodes can demonstrate unobservability and unlinkability
(when using multiple services) while being accountable for these service invocations.

In addition, DAA also provides non-frameability and correctness properties which are security
attributes that state-of-the-art solutions do not capture entirely. DAA ensures that only valid and
trustworthy TPMs are able to join the network by ensuring that the endorsed TPM keys have not
been previously compromised. This ensures that TPMs only produce valid signatures and can
only be linked when specified by a particular authorized service.

Furthermore, the integration of such advanced integrity verification capabilities, enable RAINBOW
to protect the overall system from adversaries trying to convince the Orchestrator that binaries
have not been manipulated by exploiting either the quoting process of building a fraudulent cer-
tificate. The certificate comprises the current PCR values and the nonce from the Orc. Assuming
the accumulated PCRs reflect the adversary’s presence, she can try to tamper with the certificate
creation process to reflect a forged PCR digest. Unfortunately for the adversary, the RAINBOW
trust extension will be reluctant to sign the forged certificate since it did not create it.

Based on the above, we denote our solution (to be modeled and implemented in the context
of Deliverables D2.3 and D2.4) as “zero-conf” as IoT service networking is a burden left to
RAINBOW which pushes intelligence to the control plane for fog node discovery, coverage
and self-healing (after mesh network splitting/merging); all important properties for future 5G
networks over heterogeneous and geo-distributed (fog) infrastructure.

RAINBOW D2.2 PU Page 53 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

Chapter 8

Conclusions

This final section will act as a synopsis of this deliverable and summarize its findings. The scope
of this deliverable was to provide the mode of operation, work-flow, and building blocks of
the newly introduced set of secure RAINBOW trust extensions; as part of the first release of
the RAINBOW trust overlay mesh networking capabilities towards the estblishment of trust-awre
service graph chains. This is considered as one of the main goals towards “security and privacy
by design” solutions, including all methods, techniques, and tools that aim at enforcing security
and privacy at software and system level from the conception and guaranteeing the validity of
these properties. For privacy, RAINBOW leverages advanced crypto primitives, namely Direct
Anonymous Attestation (DAA), whereas for security and operational assurance, it enables the
provision of Platform Integrity Verification.

As part of the overall RAINBOW attestation toolkit, the main goal is to allow the creation of
privacy- and trust-aware service graph chains (managed by the Orchestration Lifecycle Man-
ager and estabslished by the RAINBOW Deployment Manager) through the provision of zero-
touch configuration functionalities: fog nodes, wishing to join a fog cluster, adhere to the
compiled attestation policies by providing verifiable evidence on their configuration integrity and
correctness.

In this context, the RAINBOW collective attestation algorithms provide a multi-level security ver-
ification mechanism for supporting trust aware service graph chains (based on the identified
security attestation policies) on the integrity assurance and correctness of the comprised de-
vices: from the trusted launch and configuration to the run-time attestation of low-level
configuration properties. Based on our analysis, we described how a device achieves privacy-
preserving integrity correctness and how to utilize the attached TPM for binary data integrity.
Our early implementation and evaluation results demonstrate that trust enablers can satisfy the
privacy, security, and efficiency requirements.

Furthermore, by considering the salient characteristics of all internal RAINBOW secure compo-
nents (i.e., Integrity Verification, DAA, Secure Anonymous Authenticated Communication Chan-
nel, and CJDNS Mesh Networking), we provided the conceptual architecture of the overall trust
overlay mesh networking stack that will be provided in the upcoming deliverables. Overall, this
RAINBOW trust overlay mesh network, will integrate all the appropriate trust extensions - embed-
ding integrity verification and DAA crypto-primitives - for trust establishment enabled upon service
deployment by the RAINBOW Orchestrator. This alleviates users from having to deal with secure
network routing in fog environments and from having to establish trust among components and
services and performing runtime verification and remote attestation.

RAINBOW D2.2 PU Page 54 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

References

[1] Factoring rsa export keys - freak (cve-2015-0204). https://access.redhat.com/blogs/

766093/posts/1976563, 2015. Accessed: 2020-12-01.

[2] Trusted platform module (tpm) 2.0: A brief introduction. https :

/ / trustedcomputinggroup . org / wp-content / uploads / TPM-2 .

0-A-Brief-Introduction.pdf, 2015. Accessed: 2020-12-01.

[3] Ibm’s tpm 2.0 tss. https://sourceforge.net/projects/ibmtpm20tss/, 2020. Accessed:
2020-12-01.

[4] Linux tpm2 tss2 software. https://github.com/tpm2-software, 2020. Accessed: 2020-
12-01.

[5] Trusted platform module (tpm). https://trustedcomputinggroup.org/work-groups/

trusted-platform-module, 2020. Accessed: 2020-12-01.

[6] Tigist Abera et al. C-FLAT: Control-Flow Attestation for Embedded Systems Software. In
Proceedings of the 2016 ACM SIGSAC CCS Conf., pages 743–754.

[7] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,
J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Ben-
jamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Im-
perfect forward secrecy. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, oct 2015.

[8] Will Arthur, David Challener, and Kenneth Goldman. A Practical Guide to TPM 2.0. Apress,
2015.

[9] Opinion 03/2017 on Processing personal data in the context of Cooperative Intelligent Trans-
port Systems (C-ITS). Document, October 2017.

[10] Katelin A. Bailey and Sean W. Smith. Trusted virtual containers on demand. In 5th ACM
Workshop on Scalable Trusted Computing, STC ’10, page 63–72, 2010.

[11] J. Christopher Bare. Attestation and trusted computing. https://courses.cs.

washington.edu/courses/csep590/06wi/finalprojects/bare.pdf, 2006. Accessed:
2020-12-01.

[12] Elaine B. Barker and John M. Kelsey. Recommendation for random number generation using
deterministic random bit generators. Technical report, jun 2015.

[13] Michael Till Beck and Juan Felipe Botero. Scalable and Coordinated Allocation of Service
Function Chains. Comput. Commun., 102, 2017.

RAINBOW D2.2 PU Page 55 of 58

https://access.redhat.com/blogs/766093/posts/1976563
https://access.redhat.com/blogs/766093/posts/1976563
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://sourceforge.net/projects/ibmtpm20tss/
https://github.com/tpm2-software
https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://trustedcomputinggroup.org/work-groups/trusted-platform-module
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf
https://courses.cs.washington.edu/courses/csep590/06wi/finalprojects/bare.pdf

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

[14] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric Fournet,
Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindohoue. A
messy state of the union: Taming the composite state machines of TLS. In 2015 IEEE
Symposium on Security and Privacy. IEEE, may 2015.

[15] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Advances in Cryptology — CRYPTO '98, pages 1–12.
Springer Berlin Heidelberg, 1998.

[16] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In ACM
Conference on Computer and Communications Security, CCS, 2004.

[17] Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions of direct anonymous
attestation and a concrete scheme from pairings. International Journal of Information Secu-
rity, 8(5):315–330, feb 2009.

[18] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In Advances in Cryptology – CRYPTO 2004, pages 56–72. Springer
Berlin Heidelberg, 2004.

[19] Liqun Chen and Jiangtao Li. Flexible and scalable digital signatures in TPM 2.0. In Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications security - CCS
'13. ACM Press, 2013.

[20] Liqun Chen, Dan Page, and Nigel P. Smart. On the design and implementation of an effi-
cient DAA scheme. In Lecture Notes in Computer Science, pages 223–237. Springer Berlin
Heidelberg, 2010.

[21] The RAINBOW Consortium. Rainbow reference architecture. Deliverable D1.2, 2020.

[22] The RAINBOW Consortium. Rainbow stakeholders requirements analysis. Deliverable D1.1,
2020.

[23] The RAINBOW Consortium. Rainbow attestation model and specification. Deliverable D2.1,
January 2021.

[24] The RAINBOW Consortium. Rainbow use-cases descriptions. Deliverable D1.3, January
2021.

[25] Anupam Datta et al. A logic of secure systems and its application to trusted computing. In
30th IEEE Symposium on S&P, pages 221–236. IEEE, 2009.

[26] Benjamin Edelman. Adverse Selection in Online ’Trust’ Certifications and Search Results.
In Electronic Commerce Research and Applications 10, pages 17–25, 2011.

[27] ETSI. Trust and Privacy Management, 2012. http://www.etsi.org/deliver/etsi_ts/

102900_102999/102941/01.01.01_60/ts_102941v010101p.pdf [Online; accessed 26-
August-2017].

[28] Intelligent Transport Systems (ITS); Security; Security Header and Certificate Formats.
Technical specification, October 2017.

[29] Thanassis Giannetsos and Ioannis Krontiris. Securing V2X Communications for the Future:
Can PKI Systems Offer the Answer? In 14th Int. ARES Conf, 2019.

RAINBOW D2.2 PU Page 56 of 58

http://www.etsi.org/deliver/etsi_ts/102900_102999/102941/01.01.01_60/ts_102941v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102941/01.01.01_60/ts_102941v010101p.pdf

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

[30] Stylianos Gisdakis, Thanassis Giannetsos, and Panos Papadimitratos. SPPEAR: Security &
Privacy-preserving Architecture for Participatory-sensing Applications. In Proceedings of the
2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks, WiSec
’14, pages 39–50, New York, NY, USA, 2014. ACM.

[31] Stylianos Gisdakis, Marcello Lagana, Thanassis Giannetsos, and Panos Papadimitratos.
SEROSA: service oriented security architecture for vehicular communications. In VNC,
pages 111–118. IEEE, 2013.

[32] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proof systems. SIAM Journal on computing, 1989.

[33] Philippe Golle and Kurt Partridge. On the anonymity of home/work location pairs. In Pro-
ceedings of the 7th International Conference on Pervasive Computing, Pervasive ’09, pages
390–397, Berlin, Heidelberg, 2009. Springer-Verlag.

[34] Infineon Technologies AG. OPTIGA™ TPM SLB 9670 TPM2.0, December 2018. Rev. 1.4.

[35] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Microservices: The journey
so far and challenges ahead. IEEE Software, 35(3):24–35, 2018.

[36] Vlastimil Klı́ma, Ondrej Pokorný, and Tomáš Rosa. Attacking RSA-based sessions in
SSL/TLS. In Lecture Notes in Computer Science, pages 426–440. Springer Berlin Hei-
delberg, 2003.

[37] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel. A
cross-protocol attack on the TLS protocol. In Proceedings of the 2012 ACM conference on
Computer and communications security - CCS '12. ACM Press, 2012.

[38] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system
based on the xor metric. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, edi-
tors, Peer-to-Peer Systems, pages 53–65. Springer Berlin Heidelberg, 2002.

[39] Christopher Meyer and Jörg Schwenk. SoK: Lessons learned from SSL/TLS attacks. In
Information Security Applications, pages 189–209. Springer International Publishing, 2014.

[40] Graeme Proudler, Liqun Chen, and Chris Dalton. Trusted Computing Platforms. Springer-
Verlag GmbH, 2015.

[41] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August
2018.

[42] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted execution
environment: what it is, and what it is not. In 2015 IEEE Trustcom, pages 57–64. IEEE,
2015.

[43] Reiner Sailer et al. Design and Implementation of a TCG-based Integrity Measurement
Architecture. In USENIX Security symposium, pages 223–238, 2004.

[44] TCG. Dice layering architecture. Rev. 0.19, July 2020.

[45] TCG. Tcg tss 2.0 enhanced system api (esapi) specification Vers. 1 Rev. 08, May 2020.

RAINBOW D2.2 PU Page 57 of 58

D2.2 - RAINBOW Collective Attestation Policy Enablers Design

[46] TCG. Tcg tss 2.0 tpm command transmission interface (tcti) api specification Vers. 1.0 Rev.
18, January 2020.

[47] Ronald Toegl. On Trusted Computing Interfaces. PhD thesis, Graz University of Technology,
2013.

[48] David Wagner and Bruce Schneier. Analysis of the ssl 3.0 protocol. In Proceedings of the
2nd Conference on Proceedings of the Second USENIX Workshop on Electronic Commerce
- Volume 2, WOEC’96, page 4, USA, 1996. USENIX Association.

[49] Samuel Weiser. Enclave Security and Address-based Side Channels. PhD thesis, 6 2020.

[50] Stephan Wesemeyer, Christopher J.P. Newton, Helen Treharne, Liqun Chen, Ralf Sasse,
and Jorden Whitefield. Formal analysis and implementation of a TPM 2.0-based direct
anonymous attestation scheme. In Proceedings of the 15th ACM Asia Conference on Com-
puter and Communications Security. ACM, oct 2020.

[51] Jorden Whitefield et al. Privacy-enhanced capabilities for VANETs using direct anonymous
attestation. In IEEE Vehicular Networking Conference.

[52] Zhang Xiong, Hao Sheng, WenGe Rong, and Dave E. Cooper. Intelligent transportation
systems for smart cities: a progress review. Science China Information Sciences, 2012.

RAINBOW D2.2 PU Page 58 of 58

	List of Figures
	List of Tables
	Introduction
	Scope and Purpose
	Relation to other WPs and Deliverables
	Deliverable Structure

	Hardening the Fog/Edge IoT Stack: Intertrustability of System Composability
	Secure Remote Device Management
	Towards Decentralized Roots-of-Trust
	Rainbow Hardware Security Anchor: Trusted Platform Module
	Rainbow Software: Trusted Platform Module as a Building Block

	RAINBOW Security Asset Management Services
	Solidifying a System's Integrity: Inter-Trustability of Internal Configuration Properties

	RAINBOW Zero Touch Configuration: Integrating Trust Extensions into Fog/Edge Secure Enrollment
	System Model
	High-Level Overview
	RAINBOW Zero-Touch Integrity Verification Building Blocks
	Experimental Performance Evaluation
	Timings and Benchmarks

	Privacy-aware Service Graph Chains using RAINBOW Direct Anonymous Attestation
	The Need for ``Privacy-by-Design'' In Fog-based Ecosystems
	Direct Anonymous Attestation Building Blocks
	RAINBOW DAA Scheme
	Fog Node Registration
	Anonymous Credentials Creation
	Network Communication
	Revocation

	TPM Commands Instantiation & State Diagrams
	TPM Commands Mapping to RAINBOW DAA

	Anonymous Secure Channel Establishment
	On Using TLS keys: Benefits are Real, but so Are Drawbacks
	Key Exchange with Anonymous Authentication
	Research plan for Establishing Ephemeral Keys with Diffie-Hellman Key Agreement Protocol

	Integration of CJDNS Protocol in the RAINBOW Stack
	The Necessity of Mesh Networking in RAINBOW
	Fundamentals of CJDNS
	Layering of CJDNS
	The Switch Component
	The Router Component
	The CryptoAuth Component

	Cross-Component Packet Processing
	Admission Control

	Towards Secure & Privacy-Preserving Overlay Mesh Networking
	Design Choices & Benefits

	Conclusions

