
	
	

	

The work described in this document has been conducted within the project RAINBOW. This project has received
funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the Grant
Agreement no 871403. This document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.	
	

	

Project	Title	 AN	 OPEN,	 TRUSTED	 FOG	 COMPUTING	 PLATFORM	
FACILITATING	 THE	 DEPLOYMENT,	 ORCHESTRATION	 AND	
MANAGEMENT	OF	SCALABLE,	HETEROGENEOUS	AND	SECURE	
IOT	SERVICES	AND	CROSS-CLOUD	APPS	

Project	Acronym	 RAINBOW	

Grant	 Agreement	
No	 871403	

Instrument	 Research	and	Innovation	action	

Call	/	Topic	 H2020-ICT-2019-2020	/		
Cloud	Computing	

Start	Date	of	Project	 01/01/2020	

Duration	of	Project	 36	months	
	
	

D4.1 – Data Management Services – Early
Release

Work	Package	 WP4	–	RAINBOW	Data	Management	Services	

Lead	Author	(Org)	 Demetris	Trihinas	(UCY)	

Contributing	
Author(s)	(Org)	

M.	Symeonides,	G.	Pallis,	M.	D.	Dikaiakos	(UCY);	
A-V.	Michailidou,	T.	Toliopoulos,	G.	Vlahavas,	A.	Gounaris	(AUTH);	
S.	Kousiouris,	S.	Venios	(SUITE5)	

Reviewers	 T.	Toliopoulos	(AUTH),	J.	Kaldis	(UNISYSTEMS),	Thomas	Pusztai	
(TUW)	

Due	Date	 31.03.2021	

Actual	Submission	 31.03.2021	

Version	 1.0	
	
	
Dissemination	Level	
	
X	 PU:	Public	(*on-line	platform)	
	 PP:	Restricted	to	other	programme	participants	(including	the	Commission)		
	 RE:	Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission)	
	 CO:	Confidential,	only	for	members	of	the	consortium	(including	the	Commission)	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 2 of 76

Copyright © Rainbow Consortium Partners 2021

Versioning	and	contribution	history	

Version	 Date	 Author		 Notes	

0.0	 17.02.2021	 Demetris	Trihinas	(UCY)	 Deliverable	structure	and	content	
placeholders	

0.1	 24.02.2021	 Demetris	Trihinas	(UCY)	 Introduction		

0.2	 04.03.2021	 Demetris	Trihinas	(UCY),	Moysis	
Symeonides	(UCY)	

SOTA	for	geo-distributed	data	
processing	and	fog	analytics	

0.3	 08.03.2021	 	Theodoros	Toliopoulos	(AUTH)	 SOTA,	user	roles,	requirements	and	
interactions	for	distributed	data	
storage	

0.4	 12.03.2021	 Moysis	Symenonides	(UCY),	Sotiris	
Kousiouris	(SUITE5),	Stefanos	
Venios	(SUITE5)	

User	roles,	requirements	and	
interactions	for	distributed	data	
processing	and	fog	analytics	

0.5	 15.03.2021	 Anna-Valentini	Michailidou	(AUTH),	
George	Vlahavas	(AUTH),	Theodoros	
Toliopoulos	(AUTH),	Anastasios	
Gounaris	(AUTH)	

Distributed	data	storage	
architecture	and	implementation	

0.6	 18.03.2021	 Demetris	Trihinas	(UCY),	Moysis	
Symeonides	(UCY),	Stefanos	Venios	
(SUITE5)	

Distributed	data	processing	and	fog	
analytics	service	architecture	and	
implementation	

0.7	 20.03.2021	 Demetris	Trihinas	(UCY),	George	
Pallis	(UCY),	M.	D.	Dikaiakos	(UCY)	

Conclusions,	reference	and	release	
of	initial	document	draft	

0.8	 23.03.2021	 Demetris	Trihinas	(UCY),	Moysis	
Symeonides	(UCY),	Theodoros	
Toliopoulos	(AUTH),	Stefanos	Venios	
(SUITE5)	

Document	finalized	for	internal	
review	

1.0	 31.03.2021	 Demetris	Trihinas	(UCY)	 Document	finalized	and	ready	for	
submission	

	

Disclaimer	

This	document	contains	material	and	 information	that	 is	proprietary	and	confidential	 to	 the	RAINBOW	
Consortium	and	may	not	be	copied,	reproduced	or	modified	in	whole	or	in	part	for	any	purpose	without	
the	prior	written	consent	of	the	RAINBOW	Consortium		

Despite	the	material	and	information	contained	in	this	document	is	considered	to	be	precise	and	accurate,	
neither	the	Project	Coordinator,	nor	any	partner	of	the	RAINBOW	Consortium	nor	any	individual	acting	on	
behalf	 of	 any	 of	 the	 partners	 of	 the	 RAINBOW	 Consortium	 make	 any	 warranty	 or	 representation	
whatsoever,	express	or	implied,	with	respect	to	the	use	of	the	material,	information,	method	or	process	
disclosed	in	this	document,	including	merchantability	and	fitness	for	a	particular	purpose	or	that	such	use	
does	not	infringe	or	interfere	with	privately	owned	rights.	

In	 addition,	 neither	 the	 Project	 Coordinator,	 nor	 any	 partner	 of	 the	 RAINBOW	 Consortium	 nor	 any	
individual	acting	on	behalf	of	any	of	the	partners	of	the	RAINBOW	Consortium	shall	be	liable	for	any	direct,	
indirect	 or	 consequential	 loss,	 damage,	 claim	 or	 expense	 arising	 out	 of	 or	 in	 connection	 with	 any	
information,	material,	advice,	inaccuracy	or	omission	contained	in	this	document.	

	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 3 of 76

Copyright © Rainbow Consortium Partners 2021

Table of Contents

Executive Summary ... 6

1 Introduction ... 8

1.1 Document Purpose and Scope .. 10

1.2 Document Relationship with other Work Packages .. 11

1.3 Document Structure ... 12

2 State of the Art and Key Technology Axes Challenges .. 13

2.1 Geo-Distributed Data Storage and Sharing ... 13

2.2 Geo-Distributed Data Processing .. 15

2.3 Fog Service Analytics and Query Models .. 16

3 Distributed Data Storage and Sharing Service .. 18

3.1 Requirements and Exposed Functionality ... 18
3.1.1 Functional Requirements ... 18
3.1.2 Non-Functional Requirements ... 21

3.2 Reference Architecture and Implementation .. 22
3.2.1 Apache Ignite .. 24
3.2.2 DBMS Comparison .. 25
3.2.3 DBMS Benchmarks ... 26
3.2.4 Server and Client Instances .. 30
3.2.5 Components ... 31

3.3 Interaction with other RAINBOW Services and Components .. 32

3.4 API and Documentation ... 33

4 Distributed Data Processing Service ... 36

4.1 Requirements and Exposed Functionality ... 36
4.1.1 Functional Requirements ... 37
4.1.2 Non-Functional Requirements ... 40

4.2 Reference Architecture and Implementation .. 41
4.2.1 High-Level Logical Overview of Analytics Workflow .. 41
4.2.2 Apache Storm ... 43
4.2.3 Apache Storm in the RAINBOW Analytics Ecosystem .. 44
4.2.4 Analytics Job Scheduling in Fog Realms ... 47

4.3 Interaction with other RAINBOW Services and Components .. 50

4.4 API and Documentation ... 51

5 Fog Analytics Service .. 53

5.1 Requirements and Exposed Functionality ... 53
5.1.1 Functional Requirements ... 54
5.1.2 Non-Functional Requirements ... 57

5.2 Reference Architecture and Implementation .. 57
5.2.1 Query Model Expressivity ... 60

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 4 of 76

Copyright © Rainbow Consortium Partners 2021

5.2.2 RAINBOW-Enabled Optimizations .. 62
5.2.3 Analytics Job Compilation Process ... 65

5.3 Interaction with other RAINBOW Services and Components .. 69

5.4 API and Documentation ... 69

6 Conclusion ... 70

7 References ... 72

Appendix ... 75

EBNF Descriptive Query Model ... 75
	
	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 5 of 76

Copyright © Rainbow Consortium Partners 2021

List of tables

	
Table	1:	Scientific	Papers	Published	within	WP4	Scope	..	11
Table	2:	Distributed	Data	Storage	and	Sharing	and	interacting	user	groups	18
Table	 3:	 System-wide	 RAINBOW	 function	 requirements	 relevant	 to	 Distributed	 Data	
Storage	and	Sharing	...	19
Table	4:	Distributed	in-memory	database	qualitative	comparison	..	25
Table	5:	RAINBOW	Distributed	Data	Processing	service	and	interacting	user	groups	36
Table	 6:	 System-wide	 RAINBOW	 function	 requirements	 relevant	 to	 Distributed	 Data	
Processing	service	..	37
Table	7:	Current	status	of	RAINBOW-enabled	analytics	job	scheduling	algorithms	50
Table	8:	Distributed	Data	Processing	Service	REST	API	..	51
Table	9:	Fog	Analytics	service	and	interacting	user	groups	...	53
Table	10:	System-wide	RAINBOW	function	requirements	relevant	to	Fog	Analytics	54
Table	11:	Window-based	model	operators	...	61
Table	12:	Accumulative-based	model	operators	..	61
	

List of figures

	
Figure	1:	The	RAINBOW	Architecture	with	Data	Management	Services	Highlighted	9
Figure	 2:	 High-level	 overview	 of	 instances	 and	 components	 of	 the	 Distributed	 Data	
Storage	and	Sharing	service	...	23
Figure	3:	Ignite	and	Redis	comparison	for	workload	A	of	YCSB	..	28
Figure	4:	Ignite	and	Redis	comparison	for	workload	B	of	YCSB	..	29
Figure	5:	Local	data	caches	schemas	..	30
Figure	6:	Logical	Overview	of	the	Distributed	Data	Processing	service	in	the	RAINBOW	
ecosystem	...	42
Figure	7:	Storm	in	the	RAINBOW	Ecosystem	...	45
Figure	8:	Storm	topology	...	46
Figure	9:	High-Level	Overview	of	the	Fog	Analytics	Cycle	...	58
Figure	10:	Insight	Abstract	Syntax	..	60
Figure	11:	Exemplary	Abstract	Syntax	Tree	...	66
Figure	12:	Exemplary	query	adopting	 the	RAINBOW	query	model	vs	 the	native	Storm	
programming	model	..	67
Figure	 13:	 Queries	 reusing	 intermediate	 results	 to	 reduce	 unnecessary	 data	
computations	..	69
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 6 of 76

Copyright © Rainbow Consortium Partners 2021

Executive Summary

The	aim	 this	Deliverable	 is	 to	provide	 a	 comprehensive	overview	and	documentation	
report	 for	 the	 early	 release	 of	 the	 RAINBOW	 Data	 Management	 Services	 which	 are	
designed	and	developed	within	the	scope	of	Work	Package	4	(WP4).	The	purpose	of	WP4	
is	to	provide	the	RAINBOW	ecosystem	with	intelligent	data	management	services,	such	
as	data	storage	and	sharing	mechanisms	(T4.1),	which	can	be	deployed	alongside	the	fog	
continuum	so	that	analytic	insights	are	extracted	from	fog	services	via	geo-distributed	
data	processing	(T4.2)	with	the	use	of	high-level	analytic	query	abstractions	(T4.3).			
	
This	 Deliverable	 begins	 by	 presenting	 the	 challenges	 introduced	 in	 reference	 to	 data	
management	in	geo-distributed	deployments,	such	as	in	the	case	of	fog	computing	realms.	
Next,	it	continues	with	the	identification	of	the	requirements	and	exposed	functionality	
for	 the	 components	 comprising	 the	 RAINBOW	 Data	 Management	 Services.	 From	 the	
identified	set	of	requirements,	reference	architecture	and	public	APIs,	the	readers	obtain	
a	comprehensive	overview	of	the	early	implementation	of	the	Data	Management	Services,	
which	constitute	key	aspects	for	both	the	RAINBOW	Mesh	and	Orchestration	stack,	and	
are	key	components	comprising	the	first	prototype	release	of	the	RAINBOW	Platform.	
	
Finally,	 the	 Deliverable	 concludes	 and	 outlines	 the	 work	 to	 be	 conducted	 towards	
introducing	D4.2	that	will	assess	the	accomplishment	of	the	requirements,	features	and	
toolsets	introduced	in	this	deliverable	and	will	provide	the	final	documentation	report	of	
the	RAINBOW	Data	Management	Services.	
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 7 of 76

Copyright © Rainbow Consortium Partners 2021

Table	of	Abbreviations	
	
	 	
WP	 Work	Package	
IoT	 Internet	of	Things	
EBNF	 Extended	Backus–Naur	Form	
DB	 Database	
DBMS	 DataBase	Management	Service	
SSL	 Secure	Sockets	Layer	
TLS	 Transport	Layer	Security	
VPN	 Virtual	Private	Network	
ACID	 Atomicity,	Consistency,	Isolation	and	Durability	(refers	to	DB	transactions)	
AST	 Abstract	Syntax	Tree	
JSON	 JavaScript	Object	Notation	
SQL	 Structured	Query	Language	
KPI	 Key	Performance	Indicator	
OSN	 Online	Social	Network	
DAG	 Directed	Acyclic	Graph	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 8 of 76

Copyright © Rainbow Consortium Partners 2021

1 Introduction

The	broad	vision	of	the	RAINBOW	project	is	to	empower	IoT	service	operators	to	solely	
focus	on	the	design	and	development	of	their	services	business	logic,	leaving	to	RAINBOW	
the	burden	of	how	and	where	services	must	be	placed	(in	the	fog	continuum),	establishing	
secure	collaboration	among	entities	and	dealing	with	low-level	aspects	in	data	analysis	
including	heterogeneous	resource	management,	mobility	and	data	movement.		
	
To	 this	 end,	 Deliverable	 D4.1,	 henceforth	 simply	 referred	 to	 as	 D4.1,	 provides	 a	
comprehensive	 overview	 and	 documentation	 report	 for	 the	 early	 release	 of	 the	
RAINBOW	Data	Management	Services.	In	particular,	these	services	-developed	within	the	
scope	 of	Work	 Package	 4	 (WP4)-	 contribute	 to	 the	 enablement	 of	 interoperable	 and	
location-aware	data	processing	across	 the	 fog	continuum.	This	 is	achieved	by	pushing	
“intelligence”	 to	 the	network	 “edge”	with	 -in	place-	data	management	 and	 fog	 service	
analytics	through	decentralized	edge	APIs	capable	of	“talking”	to	each	other	without	the	
need	of	offline,	manual	or	human	intervention.	
	
To	 this	 end,	 the	 RAINBOW	 Data	 Management	 Services	 include	 three	 vital	 software	
components:	
	

- The	Distributed	Data	Storage	and	Sharing	Service:	The	role	of	this	service	is	to	
provide	 persistent	 and	 in-memory	 data	 storage	 capabilities	 to	 nodes	 scattered	
across	the	fog	continuum	to	ensure	in-time	access	to	recently	collected	monitoring	
data	by	collaborating	entities	(i.e.,	analytics,	orchestration,	routing).	To	achieve	
this,	a	high-performance	indexing	scheme	is	maintained	across	the	fog	continuum	
so	that	locally	stored	recent	and	historic	monitoring	data,	are	accessed	with	low-
latency	(stable	algorithmic	complexity).	With	monitoring	data,	we	refer	to	both	
fog	node	utilization	and	any	application-level	metrics	that	the	user	wishes	to	store	
across	the	fog	topologies	for	subsequent	use	(e.g.,	compute	analytic	insights).	In	
turn,	the	data	are	replicated	and	partitioned	across	nodes	to	ensure	user-desired	
data	quality	constraints.	In	turn,	both	a	push	and	pull-based	API	is	provided	for	
monitoring	data	delivery.	

- The	Distributed	Data	Processing	Service:	The	role	of	this	service	is	to	enable	
(geo-)	 distributed	 data	 processing,	 with	 the	 use	 of	 open	 and	 popular	 big	 data	
engines,	to	extract	analytic	insights	from	deployed	fog	services.	To	achieve	this,	
novel	 algorithms	 for	 scheduling	 analytic	 jobs	 over	 the	 secure	 overlay	 mesh	
network	 are	 utilized.	 These	 algorithms	 are	 specifically	 tailored	 to	 support	 fog-
aware	 critical	 end-user	 requirements,	 including	 performance	 indicators,	 (e.g.,	
latency	and	throughput),	data	quality,	energy	consumption	and	cost	constraints,	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 9 of 76

Copyright © Rainbow Consortium Partners 2021

along	with	optimization	policies	 for	coping	with	network	uncertainties	that	are	
highly	evident	in	the	fog	continuum.	

- The	Fog	Analytics	Service:	The	role	of	this	service	is	to	ease	the	description	and	
programmability	 of	 complex	 analytic	 jobs,	 by	 providing	 a	 high-level	 and	
declarative	query	model	that	supports	the	abstraction	of	analytics	from	real-time	
monitoring	data,	along	with	the	declaration	of	end-user	fog-aware	requirements	
(e.g.,	 optimize	 the	 analytics	 job	 for	 performance	 while	 within	 a	 certain	 cost	
budget).	 The	 query	 model	 is	 completely	 decoupled	 from	 the	 underlying	
distributed	processing	engine	to	promote	the	reuse	of	analytics	jobs.	In	turn,	the	
compilation	of	analytic	 jobs	provides	some	initial	optimizations	that	attempt	to	
reduce	 the	 unnecessary	 computation	 (and	 distribution	 over	 the	 network)	 of	
intermediate	 query	 results	 that	 are	 a	 significant	 overhead	 in	 geo-distributed	
environments.			

	
Figure	1:	The	RAINBOW	Architecture	with	Data	Management	Services	Highlighted	

Figure	1	depicts	a	high-level	overview	of	 the	RAINBOW	Platform,	highlighting	the	key	
software	 components	 of	 the	 Data	 Management	 Services.	 The	 Query	 Coordination	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 10 of 76

Copyright © Rainbow Consortium Partners 2021

Manager1,	as	the	component	name	reveals,	 is	part	of	the	Orchestration	Layer	and	is	in	
charge	of	the	runtime	coordination	of	the	Data	Management	Services.	In	particular,	upon	
application	 deployment,	 this	 component	 handles	 both	 the	 initial	 configuration	 and	
runtime	coordination	of	the	Data	Management	Services,	which	are	part	of	the	RAINBOW	
Mesh	Stack.	These	include	the	configuration	of	the	two	RAINBOW	services	deployed	on	
the	fog	nodes,	namely,	the	Storage	Agent	and	the	Analytics	Worker.	Initial	configuration	
refers	to	the	parameterization	of	the	services,	including	general	service	parameters	such	
as	network	binding(s)	and	domain-specific	parameters	such	as	the	data	eviction	period	
for	the	cache	managed	by	the	Storage	Agent	and	the	maximum	capacities	of	the	resources	
reserved	 for	 the	 Analytics	 Workers	 (e.g.,	 threads,	 memory,	 etc).	 In	 turn,	 runtime	
coordination	includes	the	deployment	of	continuous	analytic	jobs	over	the	fabric	inter-
connecting	the	Analytics	Workers	for	Distributed	Data	Processing	and	deployed	across	the	
application’s	allocated	fog	nodes.	Requests	for	new	analytic	jobs	are	received	from	the	
Analytics	Editor,	which	is	found	in	the	Analytics	Perspective	of	the	RAINBOW	Dashboard	
and	part	of	the	RAINBOW	Modelling	Layer	2,	while	updated	insights	and	plotted	data	can	
be	graphically	viewed	via	the	Analytics	Runtime	Facet	of	the	Analytics	Perspective.		
	
Finally,	it	should	be	mentioned	that	in	a	deployment,	each	Storage	Agent	while	completely	
capable	 of	 providing	 monitoring	 data	 at	 the	 local	 fog	 node	 level,	 Agents	 among	
collaborating	fog	nodes	are	also	seamlessly	inter-connected	establishing	a	Storage	Fabric.	
This,	 represents	 a	 logical	 sub-component	 that	 abstracts	 and	 unifies	 the	 functionality	
offered	by	 inter-connected	Storage	Agents,	providing	a	decentralized	API	 for	access	 to	
monitoring	 data.	 Hence,	 monitoring	 data	 are	 immediately	 made	 available	 (e.g.,	 for	
distributed	 data	 processing)	 through	 the	 RAINBOW	 secure	 overlay	 mesh	 network	
without	 data	 needed	 to	 be	moved	 to	 a	 central	 (cloud)	 location	 that	will	 provide	 data	
access	but	with	both	a	performance	penalty	and	costs	incurred	for	data	movement.	
	

1.1 Document Purpose and Scope

The	 purpose	 of	 this	 deliverable	 is	 to	 provide	 a	 comprehensive	 overview	 and	
documentation	report	of	the	early	release	of	the	RAINBOW	Data	Management	Services	
which	 contribute	 to	 providing	 interoperable	 analytic	 capabilities	 to	 fog-enabled	
deployments	 via	 intelligent	 data	 storage	 and	 processing	 mechanisms	 capable	 of	
operating	in	the	fog	continuum	and	on	top	of	trusted	overlay	mesh	networks.	In	respect	
to	this,	D4.1	aims	to	derive	a	clear	overview	of	the	early	design	and	development	of	the	
three	 components	 comprising	 the	 RAINBOW	 Data	 Management	 Services	 and	 are	
developed	 under	 the	 umbrella	 of	WP4,	 namely:	 (i)	 the	 Distributed	 Data	 Storage	 and	

	
1	Also	referred	to	as	the	Analytics	Enabler.	
2	This	component,	although	tightly	coupled	with	fog	analytics,	is	highlighted	with	a	dashed	lining	as	it	is	
part	of	the	RAINBOW	Dashboard	developed	within	the	scope	of	WP5.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 11 of 76

Copyright © Rainbow Consortium Partners 2021

Sharing	Service;	(ii)	the	Distributed	Data	Processing	Service;	and	(iii)	the	Fog	Analytics	
Service.	 To	 this	 end,	 D4.1	 documents	 for	 each	 component	 of	 the	 RAINBOW	 Data	
Management	layer,	the	requirements	that	must	be	satisfied	to	overcome	the	challenges	
introduced	when	deploying	 data	 storage	 and	 analytics	 services	 in	 the	 fog	 continuum,	
their	functionalities,	how	they	operate	and	the	first	version	of	their	exposed	API	which	is	
used	to	interact	with	other	RAINBOW	components,	users	and/or	third-party	services.		
	
Finally,	we	note	 that	parts	of	D4.1	are	based	on	a	number	of	scientific	papers	 [1]–[5],	
which	 introduce	 core	 concepts	 of	 the	 components	 part	 of	 the	 RAINBOW	 Data	
Management	Services	and	WP4.	These	papers,	all	developed	within	the	 first	reporting	
period,	are	highlighted	below:	
	

Table	1:	Scientific	Papers	Published	within	WP4	Scope	

WP4	Scientific	Papers		 RAINBOW	
Partners	

PROUD:	PaRallel	OUtlier	Detection	for	Streams.	T.	Toliopoulos,	C.	Bellas,	A.	
Gounaris,	and	A.	Papadopoulos.	In	Proceedings	of	the	2020	ACM	SIGMOD	
International	 Conference	 on	 Management	 of	 Data	 (SIGMOD	 '20).	
Association	for	Computing	Machinery,	New	York,	NY,	USA,	2717–2720.	

AUTH	

Fogify:	 A	 Fog	 Computing	 Emulation	 Framework.	 M.	 Symeonides,	 Z.	
Georgiou,	 D.	 Trihinas,	 G.	 Pallis	 and	 M.	 D.	 Dikaiakos,	 2020	 IEEE/ACM	
Symposium	on	Edge	Computing	(SEC),	San	Jose,	CA,	USA,	2020,	pp.	42-54.	

UCY	

[Best	 Demo	 Award]	 Emulating	 Geo-Distributed	 Fog	 Services.	 M.	
Symeonides,	 Z.	 Georgiou,	 D.	 Trihinas,	 G.	 Pallis	 and	 M.	 D.	 Dikaiakos,	 2020	
IEEE/ACM	Symposium	on	Edge	Computing	(SEC),	San	Jose,	CA,	USA,	2020,	
pp.	187-189.	

UCY	

A	 Self-stabilizing	 Control	 Plane	 for	 Fog	 Ecosystems.	 Z.	 Georgiou,	 C.	
Georgiou,	G.	Pallis,	E.	M.	Schiller,	 and	D.	Trihinas,	 In	2020	 IEEE/ACM	13th	
International	Conference	on	Utility	and	Cloud	Computing	(UCC),	pp.	13-
22,	December	2020.	

UCY	

	

1.2 Document Relationship with other Work Packages

This	deliverable	 is	built	on	the	foundation	of	D1.1	and	D1.2,	which	provide	a	concrete	
documentation	of	the	RAINBOW	ecosystem	requirements	along	with	the	current	version	
of	the	reference	architecture,	including	the	key	technologies	and	features	supported	by	
RAINBOW.	 To	 this	 end,	 D4.1	 extends	 the	 RAINBOW	 documentation	 by	 providing	 a	
comprehensive	report	for	the	RAINBOW	Data	Management	Services.	What	is	more,	D4.1	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 12 of 76

Copyright © Rainbow Consortium Partners 2021

serves	 as	 a	 guide	 for	 D4.2,	 the	 RAINBOW	Data	Management	 Services	 -	 Final	 Release,	
which	 will	 assess	 the	 accomplishment	 of	 the	 requirements,	 features	 and	 toolsets	
introduced	in	this	deliverable	and	will	provide	the	final	documentation	of	the	RAINBOW	
Data	Management	Services.	
	

1.3 Document Structure

The	rest	of	this	deliverable	is	structured	as	follows:	Section	2,	provides	an	updated	guide	
of	 the	 comprehensive	 report	 introduced	 in	 D1.2	 and	 referring	 to	 the	 State-of-the-Art	
landscape	 in	 data	 management	 for	 containerized	 applications	 deployed	 across	 geo-
distributed	realms.	Section	3,	4	and	5,	present	a	comprehensive	documentation	report	
introducing	the	reference	architecture,	exposed	functionality	and	implementation	details	
referring	 to	 the	 software	 components	 of	 the	 RAINBOW	 Data	 Management	 Services.	
Section	 6	 concludes	 this	 Deliverable	 and	 outlines	 the	work	 to	 be	 conducted	 towards	
introducing	 D4.2.	 In	 the	 Appendix,	 a	 comprehensive	 overview	 of	 the	 fog	 analytics	
descriptive	query	model	is	provided	in	a	normative	format	(EBNF).		 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 13 of 76

Copyright © Rainbow Consortium Partners 2021

2 State of the Art and Key Technology Axes Challenges

In	 this	Section,	we	will	update	 the	State-of-the-Art	presented	 in	D1.2.	Particularly,	we	
present	the	challenges	introduced	in	reference	to	storing	and	processing	data	to	derive	
high-level	analytic	insights	in	fog-enabled	geo-distributed	execution	environments.	
	

2.1 Geo-Distributed Data Storage and Sharing

Edge	 computing	 frameworks,	 like	 RAINBOW,	 are	 highly	 distributed	 as	 tens	 or	 even	
hundreds	 of	 devices	 are	 placed	 at	 multiple	 locations.	 These	 devices	 need	 to	 access	
persistently	 stored	 data,	 modify	 and	 save	 them	 to	 a	 database.	 Moreover,	 real-time	
analysis	 on-the-fly	 is	 crucial	 when	 dealing	 with	 Edge	 Computing	 applications	 and	
streaming	data,	like	for	example	the	analysis	of	sensor	data.	When	choosing	a	Database	
Management	System	for	such	a	scenario	new	challenges	arise,	compared	to	a	centralized	
solution.	
	
Scalability,	as	previously	mentioned,	is	crucial	in	Edge	Computing	as	we	deal	with	tens	or	
hundreds	of	devices,	as	said	previously.	High	scalability	also	increases	the	elasticity	of	the	
DBMS	 and	 the	 ability	 to	 handle	 workload	 changes.	 Scalability	 in	 such	 scenarios	 is	
horizontal	by	means	of	adding	more	devices	when	demand	for	resources	arises	[6],	[7].	
Couchbase	[8]	provides	Multi-Dimensional	scaling	that	scales	queries,	indexes	and	data,	
supporting	more	than	one	hardware	profile,	resulting	in	isolation	of	services.		
	
The	reliability	and	fault-tolerance	of	a	distributed	DBMS	is	often	achieved	through	data	
replication,	i.e.,	copies	of	data	that	are	stored	in	multiple	devices	[6],	[9].	The	master-slave	
model	is	used	in	multiple	DBMSes,	whereas	multiple	replication	types	like	transactional,	
snapshot	 or	 merge	 and	 schemas	 like	 full	 or	 partial	 exist.	 Multi-master	 replication	 is	
preferable	when	 dealing	with	multiple	 devices.	 Amazon	 Aurora	 [10],	 ArangoDB	 [11],	
CouchDB	 [12],	PostgreSQL	 [13]	and	Redis	 [14]	provide	 this	 feature.	The	Multi-master	
paradigm	also	increases	the	availability	and	response	time	of	the	DBMS.	Also,	distributed	
DBMSes	 have	 to	 handle	 more	 aspects	 regarding	 concurrency	 and	 recovery,	 when	
compared	to	a	centralized	DBMS.	More	specifically,	data	consistency	is	trickier	due	to	the	
multiple	 copies	 of	 data	 and	 distributed	 commits.	 Riak	 [15]	 tackles	 this	 by	 allowing	
conflicting	 copies	 of	 data	 to	 exist	 at	 the	 same	 time	 while	 guaranteeing	 eventual	
consistency.	
	
Moreover,	DBMSes	should	also	take	into	account	the	failure	of	links	and	devices.	Apache	
Cassandra	[16]	 features	no	single	point	of	 failure.	A	Write	Ahead	Log	 [17],	 [18]	 is	also	
used	to	keep	logs	of	transactions	in	case	of	device	failure.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 14 of 76

Copyright © Rainbow Consortium Partners 2021

	
In	 order	 to	 optimize	 the	 use	 of	 multiple	 edge	 devices	 and	 reduce	 bottlenecks,	 i.e.,	
overloading	of	certain	devices,	 load	balancing	algorithms	must	be	a	part	of	 the	DBMS.	
This	can	be	achieved	by	dynamically	altering	the	placement	of	data	to	devices	in	order	to	
off-load	them.	Slicer	[19]	is	a	service	that	partitions	data	using	keys	while	monitoring	the	
load	 of	 each	 key	 and	 making	 rebalancing	 moves.	 Accordion	 [7]	 keeps	 load	 balanced	
through	 scaling	 (adding	 or	 removing	 devices)	 and	 predicts	 bottlenecks	 based	 on	
transaction	affinity.	Other	works	[20],	[21]	achieve	fine-grained	partitioning	of	data	by	
detecting	and	carefully	placing	the	“hot”	tuples.		
	
The	nature	of	data	RAINBOW	deals	with	is	streaming	and	multiple	data	are	produced	per	
second.	The	fast	analysis	of	them	and	real-time	responses	are	crucial	in	Edge	Computing	
scenarios.	Saving	and	accessing	data	through	the	disk	would	cause	a	large	non-acceptable	
overhead,	thus	the	use	of	in-memory	databases	for	analysis	and	distribution	is	the	way	
forward.	 VoltDB	 [22]	 is	 a	 main	 memory	 DBMS	 based	 on	 H-Store	 providing	 elastic	
scalability,	 rapid	 failover	 and	 consistent	 low	 latency	 but	 distributed	 transactions	 are	
performed	 by	 a	 single	 thread.	 	 Redis	 [14]	 is	 an	 open-source,	 fast	main-memory	 data	
structure	store.	Redis	can	eliminate	delays	in	data	retrieval	achieving	very	fast	response	
times	with	read	and	write	operations	taking	less	than	a	millisecond,	while	it	also	provides	
high	 availability,	 scalability,	 fast	 fault	 recovery,	 built-in	 replication	 and	 on-disk	
persistence.	 Hazelcast	 IMDG	 [23]	 is	 an	 open-source	 in-memory	 data	 grid.	 The	 main	
advantage	of	using	data	grids	is	speed,	especially	when	dealing	with	vast	streaming	data.	
Data	 are	 evenly	 distributed	 to	 the	 cluster	 nodes	 providing	 horizontal	 scaling.	 Apache	
Ignite	 [18]	 is	 an	 open-source,	 distributed	 store	 designed	 to	 work	 with	 big	 data	 and	
clusters	of	nodes.	The	form	in	which	data	is	being	stored	is	in	key-value	pairs	which	can	
be	 replicated	 or	 partitioned	 across	 the	 nodes	 of	 the	 cluster,	 achieving	 scalability	 and	
fault-tolerance.	Ignite	also	supports	co-located	processing	enabling	the	analysis	of	data	
on	nodes	and	achieving	lower	data	transferring	across	the	network	making	it	suitable	for	
data-intensive	or	compute-intensive	analytics	like	RAINBOW	use	cases.	
	
Finally,	 a	 distributed	 DBMS	 needs	 to	 take	 additional	 security	 measures	 due	 to	 the	
extensive	 number	 of	 users	 and	 devices	 that	 access	 the	 data.	 The	 security	 should	 be	
considered	both	in	the	communication,	that	is	at	the	exchanging	of	data	as	well	as	in	data	
by	means	of	authentication	and	encryption.	The	first	part	can	be	achieved	through	SSL	
and	TLS	protocols	and	the	use	of	VPN	while	the	second	through	digital	certificates.	What	
DBMSes	can	provide	to	security	is	the	encryption	of	data	upon	storing	them	using	keys	
[24]	as	well	as	authentication	and	access	control	mechanisms	[25],	[26].	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 15 of 76

Copyright © Rainbow Consortium Partners 2021

2.2 Geo-Distributed Data Processing

For	more	than	the	better	parts	of	the	last	two	decades,	we	are	witnessing	the	exponential	
growth	in	both	the	volume	of	available	data	and	the	velocity	at	which	data	is	generated.	
For	 many	 of	 today’s	 diverse	 applications,	 the	 tools	 to	 process	 data	 at	 scale	 are	
frameworks	 adopting	 variants	 of	 the	 MapReduce/DataFlow	 programming	 paradigms	
that	 exploit	 various	 degrees	 of	 parallelism	 in	 the	 data	 flow	 [27]–[30].	 In	 particular,	
frameworks	 such	 as	 Hadoop,	 Spark,	 Flink	 and	 Storm,	 decompose	 analytics	 jobs	 into	
stages,	where	 each	 stage	 can	 then	be	 further	 divided	 into	 independent	 tasks	 that	 are	
scheduled	 in	 parallel	 and	 executed	 on	 the	 worker	 nodes	 of	 a	 distributed	 computing	
cluster	 [31].	 Therefore,	 any	 per-task	 performance	 gain	 can	 significantly	 improve	 the	
overall	performance	of	the	analytics	job.	
	
As	finding	the	(near-)	optimal	placement	for	analytic	tasks	over	distributed	computing	
nodes	is	not	a	hard-enough	problem	itself,	the	geo-distribution	of	data	analytics	due	to	
the	prevalence	of	the	Internet	of	Things	(IoT)	is	exhausting	the	limits	of	the	schedulers	
available	in	today’s	big	data	engines.	Delay-sensitive	IoT	applications	are	now	embracing	
fog/edge	 computing	 to	 process	 data	 in-proximity	 of	 the	 data	 origin	 to	 reduce	 any	
potential	 overheads	 of	 disseminating	 data	 back-and-forth	 to	 the	 cloud	 [32],	 [33].	
However,	 data	 processing	 in	 fog	 ecosystems	 has	 its	 challenges	 [34].	 In	 fog	 realms,	
resource	heterogeneity	is	the	norm,	which	contradicts	with	the	operating	requirements	
of	 data	 analytics	 frameworks	 that	 are	 optimized	 for	 homogeneous	 machine	 clusters	
found	 in	 the	 cloud	 [35].	 In	 turn,	 the	 network	 capabilities	 of	 each	 worker	 can	 also	
significantly	differ,	 as	well	 as,	 the	network	distance	 from	 the	other	workers	 [36].	The	
latter	has	the	potential	to	significantly	impact	the	performance	of	an	analytics	job	as	slow	
running	 tasks	 on	 “distant”	 worker	 nodes	 creates	 bottlenecks	 on	 the	 overall	 job	
performance.	 Hence,	 data	 processing	 using	 big-data	 engines	 is	 dominated	 by	 the	
communication	between	map-reduce	phases,	where	several	replicas	of	identical	data	are	
transferred	to	the	reduce	phase	for	obtaining	final	outputs.	
		
Capitalizing	on	the	effect	of	network	heterogeneity	in	geo-distributed	environments,	Pu	
et	 al.	 introduce	 Iridium	 [37].	 Iridium	 is	 an	 analytics	 scheduler	 for	 Apache	 Spark	 that	
attempts	 to	 achieve	 low	 query	 response	 times	 by	 optimizing	 both	 task	 and	 data	
placement.	The	system	uses	a	linear	solver	that	considers	both	site	bandwidths	and	query	
characteristics	to	solve	the	placement	problem,	while	redistributing	datasets	among	the	
sites	 before	 queries’	 arrivals.	 In	 turn,	 Tetrium	 [38]	 extends	 the	 Iridium	 scheduler,	 by	
utilizing	multi-resource	allocation	in	geo-distributed	clusters	and	jointly	considers	both	
compute	and	network	resources	for	task	placement	and	job	scheduling.	Focusing	on	the	
placement	 of	 tasks,	 Flutter	 [39]	 deploys	 the	 operators	 closer	 to	 the	 data	 sources	 and	
optimizes	 individually	 every	 stage	of	 a	Map-Reduce	 graph.	 Similarly,	WANalytics	 [40]	
takes	 as	 input	 arbitrary	DAGs	of	 computations	 and	optimizes	 each	node	of	 the	 graph	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 16 of 76

Copyright © Rainbow Consortium Partners 2021

individually.	 The	 processing	 takes	 place	 at	 edge	 DCs	 while	 a	 heuristic	 mechanism	 is	
applied	for	the	data	transfer	reduction	between	them.	In	turn,	Gaia	[41]	is	a	framework	
that	maintains	the	performance	of	geo-distributed	execution	by	applying	an	intelligent	
communication	 mechanism	 over	 bandwidth-constrained	 networks	 in	 an	 attempt	 to	
guarantee	both	accuracy	and	correctness	during	the	execution.	
		
Most	of	the	aforementioned	frameworks	consider	deployments	on	geo-distributed	data	
centers	 without	 exploring	 inherent	 needs	 of	 IoT	 applications,	 such	 as	 streaming	
execution,	and	without	the	consideration	that	the	analytics	workers	may	reside	on	very	
constrained	 nodes.	 Towards	 this,	 T-storm	 [42]	 supports	 the	 application	 of	 query	
operators	over	streaming	settings	by	considering	the	inter-node	and	inter-process	traffic	
to	 assign	 workload	 to	 the	 nodes,	 rather	 than	 the	 baseline	 approach	 adopted	 by	 the	
Apache	Storm	engine.	 In	 turn,	R-Storm	[43]	 is	a	resource-aware	scheduler	 for	Apache	
Storm	that	efficiently	allocates	analytic	tasks	to	the	underlying	resources,	while	the	T3-
Scheduler	[44]	attempts	to	place	communicating	tasks	closer	to	each	other.	Even	if	the	
aforementioned	 frameworks	 efficiently	 schedule	 query	 pipelines	 with	 streaming	
operators,	 they	 do	 not	 consider	 specific	 Fog	 and	 Edge	 computing	 characteristics.	 For	
instance,	 Edge	 computing	 frameworks,	 like	 EdgeWise,	 consider	 more	 processing	
restrictions	to	improve	latency	and	throughput	[45].	EdgeWise	is	built	on	top	of	Apache	
Storm	and	assigns	streaming	operators	to	underlying	workers.	Yet,	the	system	is	limited	
because	it	does	not	consider	any	network	implications.		
	

2.3 Fog Service Analytics and Query Models

IoT	 services	 spanning	 across	 the	Fog	 continuum,	 generate	 vast	 amounts	of	 streaming	
data	 ranging	 from	 IoT	 device	 performance	 to	 IoT	 service	 behavior	 and	 up	 to	 user-
relevant	data.	The	aforementioned	data	streams	fall	within	the	class	of	big	data	since	they	
are	 characterized	by	 their	 variety,	 velocity,	 and	 volume	 (3Vs).	 Consequently,	 big	 data	
distributed	 processing	 engines	 are	 the	 mainstream	 approach	 for	 stream	 processing.	
These	processing	engines,	as	the	name	denotes,	feature	strict	programming	models	for	
defining,	even	large	pipelines	of	operations	on	the	ingested	data	(e.g.,	transformations,	
aggregations	 and	 grouping)	 by	 adopting	 the	 map-reduce	 paradigm	 (e.g.,	 Hadoop),	
dataflow	programming	models	(e.g.,	Spark,	Flink),	and/or	user-defined	Directed	Acyclic	
Graphs	(DAGs)	(e.g.,	Storm).	The	latter	is	considered	a	steep	learning	curve	for	users,	e.g.,	
Service	 Operators3,	 that	 are	 not	 programming	 experts	 and	 are	 not	 familiar	 with	 the	
specific	programming	concepts.	
	

	
3	Adopting	RAINBOW	user	role	terminology.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 17 of 76

Copyright © Rainbow Consortium Partners 2021

To	alleviate	the	implication	of	advanced	knowledge	of	a	programming	model,	operator	
abstractions	have	already	been	introduced	for	the	most	popular	big	data	frameworks.	For	
instance,	 Trident	 [46]	 is	 a	 framework	 for	 Apache	 Storm,	 that	 introduces	 pipeline	
operators	 applicable	 to	 ingested	data	 streams	 in	order	 to	minimize	 the	 Storm’s	DAGs	
programming	effort.	Similarly,	the	Apache	Spark	ecosystem	includes	two	packages	with	
high-level	 query	 abstractions	 on	 top	 of	 the	 Spark	 engine,	 namely	 SparkSQL	 [47]	 and	
Structured	Streaming		[48].	The	former	provides	a	set	of	SQL-like	operators	on	top	of	the	
Spark	 programming	 model,	 while	 the	 latter	 enriches	 SparkSQL	 with	 streaming	
capabilities.	Even	if	these	approaches	are	in	the	right	direction,	they	are	focused	only	on	
big	data	analytics,	without	providing	edge-	and	fog-oriented	operators	and	optimizations.	
	
Domain-Specific	Languages	(DSLs)	offer	pre-defined	abstractions	to	represent	concepts	
from	 an	 application	 domain	 and	DSL	 compilers	 are	 rather	 optimized	 for	 this	 specific	
domain.	The	unique	characteristics	of	IoT	processing	and	Edge	Computing	demand	new	
operators	 to	 express	 different	 constraints	 and	 optimizations	 such	 as	 sampling,	 upper	
error-bounds,	bounded	resources,	placement	awareness,	among	others	[34].		
	
Recently,	 a	handful	 of	 frameworks	have	been	proposed	 to	derive	 analytic	 insights	 for	
edge	 computing	 and	 network	 telemetry.	 For	 example,	 Edgent	 [49]	 is	 a	 framework	
providing	micro-kernel	run-times	with	small	footprints	that	are	particularly	tailored	to	
deriving	 streaming	 analytics	 on	 IoT	 gateways,	 network	 routers,	 and	 edge	 devices.	
Tailored	 to	 edge	 network	 telemetry	 analytics,	 Sonata	 [36]	 is	 a	 framework	 that	 offers	
scalable	streaming	processing.	The	framework	provides	a	declarative	pipeline-interface	
that	allows	network	operators	to	express	their	analytic	queries.	Under	the	hood,	Sonata	
uses	 the	 programmable	 data-plane	 of	 network	 switches	 for	 query	 preprocessing	 and	
Spark	for	query	execution.	However,	Sonata	is	developed	solely	for	packet-level	network	
telemetry	analytics	without	any	acknowledgment	for	other	types	of	data.		In	contrast	to	
the	 aforementioned,	 StreamSight	 is	 a	 framework	 (developed	 by	 UCY)	 [50]	 for	 edge-
enabled	 IoT	 services	 which	 provides	 rich	 and	 declarative	 query	 abstractions	 for	
expressing	complex	analytics	over	data	streams	and	compiling	these	queries	into	stream	
processing	 jobs	 for	 distributed	 processing	 engines.	 StreamSight	 offers	 several	 query	
operators	to	derive	high-level	analytic	insights,	along	with	execution	optimizations	and	
constraints	 tailored	 for	 edge	 computing	 to	 achieve	 latency,	 robustness,	 and	
approximations	in	query	execution.	
	
	
	
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 18 of 76

Copyright © Rainbow Consortium Partners 2021

3 Distributed Data Storage and Sharing Service

In	 this	 Section,	 we	 present	 a	 comprehensive	 documentation	 report	 introducing	 the	
reference	architecture,	exposed	functionality	and	implementation	details	referring	to	the	
Distributed	Data	Storage	and	Sharing	Service.	
	

3.1 Requirements and Exposed Functionality

Based	on	the	user	groups	documented	in	D1.1,	the	identified	users	interacting	with	the	
RAINBOW	Data	Storage	and	Sharing	are	presented	in	Table	2	and	are	the	following:	
	

Table	2:	Distributed	Data	Storage	and	Sharing	and	interacting	user	groups	

User	Group	 Interaction	with	Distributed	Data	Storage	and	Sharing	
Service	

Service	
Operator/Owner	

Interacts	 with	 the	 RAINBOW	 Data	 Storage	 and	 Sharing	
service	by	defining	 the	 time	range	 for	which	historical	data	
will	 be	 persistently	 stored	 (data	 extinction	 period).	 This	 is	
done	 by	 using	 the	 graphical	 tools	 for	 service	 description	
enrichment	made	available	through	the	Service	Graph	Editor	
of	the	RAINBOW	Dashboard.	

Service	Developer	 Interacts	 with	 the	 RAINBOW	 Data	 Storage	 and	 Sharing	
service	 by	 defining	 the	 schema	 and	 storage	 properties	 for	
custom	 application	 data	 that	will	 be	 stored	 in	 the	 service’s	
database.	

RAINBOW	
Developer	

Interacts	 with	 the	 RAINBOW	 Data	 Storage	 and	 Sharing	
Service	 by	 developing	 custom	 schemas	 and	 data	 access	
endpoints	 to	 increase	 the	usage	 and	 the	 reachability	 of	 the	
service.	

Fog	Infrastructure	
Provider	

Interacts	 with	 the	 RAINBOW	 Data	 Storage	 and	 Sharing	
Service	by	accessing	monitoring	and	routing	data	regarding	
fog	offerings	utilization.	

	

3.1.1 Functional Requirements

The	RAINBOW	system	requirements,	documented	 in	D1.1	 referring	 to	 the	Distributed	
Data	Storage	and	Sharing	service	are	the	following:		
	
	
	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 19 of 76

Copyright © Rainbow Consortium Partners 2021

Table	3:	System-wide	RAINBOW	function	requirements	relevant	to	Distributed	Data	Storage	and	Sharing	

Req.	No.	 Requirement	
FR.25	 Efficient	data	storage	and	placement	based	on	restrictions	
FR.26	 Specify	monitoring	data	for	storage	based	on	analytic	queries	and	

orchestration	SLOs	
	
To	satisfy	the	system	requirements	documented	in	D1.1	while	also	adhering	to	the	key	
technology	 axes	 of	 the	 Data	 Management	 layer	 presented	 in	 D1.2,	 the	 following	
functionality	must	be	exposed	by	the	Distributed	Data	Storage	and	Sharing	Service.	
	
ID	 FR.DSS.1	
Title	 Storage	for real-time	and	historical	monitoring data	
Description	 The	Distributed	Data	Storage	and	Sharing	service	must	provide	the	

means	to	store	both	real-time	and	historical	monitoring	data	using	
efficient	data	structures	for	fast	read/write	query	operations.	

Exposed	
Functionality	

The	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 able	 to	
efficiently	store	data	using	both	key-value	and	sql-like	tables.	Real-
time	data	are	stored	in-memory	for	faster	query	execution	by	using	
a key-value	cache.	The	real-time	data	are	also	persistently	stored	in	
sql-like	 tables	 along	 with	 the	 rest	 of	 the	 historical	 data	 using	
specified	indices	making	execution	of	queries	faster. To	this	end,	a	
prototype	adopting	(and	extending)	the	open-source	and	popular	
Apache	Ignite	has	been	developed.	

	
ID	 FR.DSS.2	
Title	 Historical	data	eviction	based	on	user-desired	eviction	

policies	
Description	 The	Data	Storage	and	Sharing	service	must	provide	the	means	to	

control	the	time	range	of	the	historical	data	(data	eviction	period).
This	 in	 turn	 limits	 the	 volume	 of	 the	 persistent	 data	 and	 the	
memory	 resources	needed	by	 the	 service	 so	 that	 even	 fog	nodes	
with	limited	storage	capabilities	can	be	supported.	

Exposed	
Functionality	

The	service is	able	to	evict	older	historical	data	using	their	creation	
timestamp.	The	time	range	is	a	user	specified	parameter	which	is	
provided	 through	 the	 Service	Graph	Editor.	 Afterwards	 any	data	
row	whose	lifetime	exceeds	the	time	range	variable	is	automatically	
considered	expired	 from	 the	 storage. Finally,	 the	 expired	 entries	
are	 removed. To	 this	 end,	 an	 initial	 management	 API	 has	 been	
implemented	to	control	the	storage	nodes	accordingly.	

	
	
	
	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 20 of 76

Copyright © Rainbow Consortium Partners 2021

ID	 FR.DSS.3	
Title	 Efficient	partitioning	and	replication	algorithms	
Description	 The	Data	Storage	and	Sharing	service	must	provide	the	means	to	

efficiently	 utilize	 the	 underlying	 fog	 resources	 by	 partitioning	
and/or	replicating	stored	data	when	needed.	

Exposed	
Functionality	

The	service	is	able	to efficiently	partition	or	replicate	stored	data	
based	on	the	resource	congestion	and	frequency	of	read	requests.	
This	is	accomplished	by	taking	into	account	many	system,	database	
and	network	metrics	in	order	to	decide	the	correct	data	placement	
that	will	 lead	 to	 less	data	movement	and	more	efficient	resource	
allocation.	 In	 addition,	 the	 algorithms	 will	 also	 monitor	 fragile	
nodes	and	fully	replicate	the	stored	data	in	order	to	prevent	loss	of	
information. At	the	time	of	writing	this	deliverable,	the	deployment	
allows	 for	 custom	data	placement	 and	partitioning,	while	 query-
aware	analysis	methods	are	currently	under	design.	

	
ID	 FR.DSS.4	
Title	 Secure	data	access	
Description	 The	Data	Storage	and	Sharing	service	must	provide	the	means	to	

access	 the	 storage.	 The	 access	 can	 either	 be	 used	 for	writing	 or	
querying	 data.	 Additionally,	 the	 data	 should	 be	 available	 to	 the	
requesting	 service	 or	 component	 from	 any	 instance	 of	 the	
distributed	data	storage.	

Exposed	
Functionality	

The	Distributed	Data	Storage	and	Sharing	service	is	able	to	allow	
access	to	requesting	services	and	components	through	an	API	layer	
on	 top	 of	 every	 distributed	 data	 storage	 instance	 (the	 Storage	
Fabric).	The	layer	can	be	used	for	both	writing	data	and	requesting	
either	the	latest	(real-time)	or	the	historical	stored	data.	This	avoids	
the	need	of	having	to	query	every	single	instance	for	data	when	an	
aggregation	must	be	performed.		

	
ID	 FR.DSS.5	
Title	 In-memory	cache	for	routing	tables	
Description	 The	Data	Storage	and	Sharing	service	must	provide	the	means	to	

temporarily	cache	the	routing	tables	for	the	secure	CJDNS	overlay	
network	protocol.

Exposed	
Functionality	

The	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 able	 to	
temporarily	 store	 in-memory	 the	 routing	 tables	 of	 the	 overlay	
network.	 Each	 node	 stores	 its	 own	 routing	 table	 in	 a	 key-value	
cache	 which	 can	 be	 queried	 by	 other	 services	 and	 components
using	the	Storage	Fabric	API.	

	
	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 21 of 76

Copyright © Rainbow Consortium Partners 2021

ID	 FR.DSS.6	
Title	 Custom	schema	support	for	app-specific	data	storage	
Description	 The	Data	Storage	and	Sharing	service	must	provide	the	option	to	

temporarily	 store	 application-specific	 data	 from	 the	 application	
instances	that	run	on	the	control	plane.

Exposed	
Functionality	

The	Distributed	Data	Storage	and	Sharing	service	is	able	to	allow	
applications	running	on	the	nodes	to	provide	custom	schemas	(data	
models)	 and	 store	 data	 that	 are	 compliant	 with	 the	 specified	
schema.	The	data	are	stored	in	a	distributed	in-memory	cache.	The	
application-specific	data	are	available	 for	queries	 through	an	API	
layer	running	on	top	of	the	instances.	The	use	of	this	API	is	optional.	

	
ID	 FR.DSS.7	
Title	 Deployment	in	geo-distributed	realms	
Description	 The	 Data	 Storage	 and	 Sharing	 service	 must	 be	 able	 to	 function	

properly	 in	 a	 geo-distributed	 environment	 with	 heterogeneous	
networking	and	physical	machines.	

Exposed	
Functionality	

The	service	is	able	to adapt	on	the	movement	of	fog	nodes	either	
when	a	new	one	enters	the	network	or	when	one	leaves	it.	Also,	the	
service	takes	 into	account	the	heterogeneity	of	the	network	links	
between	the	nodes	in	order	to	prevent	loss	of	data.	On	both	cases	
the	 functionality	 of	 the	 Data	 Storage	 and	 Sharing	 service	 is	 not	
compromised.	

	

3.1.2 Non-Functional Requirements

ID	 NFR.DSS.1	
Title	 ACID	compliance	
Description	 The	Data	Storage	service	must	comply	with	the	ACID	properties	for	

database	transactions,	even	if	the	data	are	stored	in-memory	for	fast	
data	 access.	 Towards	 this,	 the	 service	 must	 guarantee	 for	 every	
transaction	 the	 data	 validity,	 through	 novel	 data	 replication	 and	
sharding	mechanisms,	 despite	 possible	 errors	 due	 to	 the	 dynamic	
nature	of	the	fog	environment.	Thus,	the	Data	Storage	service	should	
not	 lose	 data	 over	 power	 failures,	 node	 movement	 and	 resource	
congestion.	

	
ID	 NFR.DM.2	
Title	 Data	Volume	
Description	 The	Data	Storage	service	must	be	able	to	store	an	unbounded	volume	

of	data	without	errors	while	adhering	to	both	the	user-desired	data	
eviction	 parameterization	 and	 the	 fog	 node's	 physical	 storage	
capabilities/limitations. Hence,	the	volume	of	the	monitoring	and	the	
user-specified	metrics	can	change	at	any	time	without	impacting	the	
functionality	of	the	storage.		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 22 of 76

Copyright © Rainbow Consortium Partners 2021

	
ID	 NFR.DSS.3	
Title	 Non-Intrusiveness	
Description	 The	Data	Storage	service	must	not	interfere	with	the	system	or	the	

functionality	 of	 any	 application(s).	 The	 stored	 data	 and	 the	
transactions	should	not	consume	excessive	resources from	either	the	
underlying	 fog	 offerings	 or	 the	 containerized	 execution	
environment.		

	
ID	 NFR.DSS.4	
Title	 Authorized	Data	Access	
Description	 The	 Data	 Storage	 service	 must	 be	 secure	 when	 a	 service	 or	

component	 tries	 to	 access	 data.	 Each	 RAINBOW	 or	 third-party	
service	 should	 only	 be	 able	 to	 access	 the	 respective	 data	 through	
authentication.	 Thus,	 the	 Data	 Storage	 service	 should	 be	 able	 to	
handle	requests	from	authenticated	users/services.	

	

3.2 Reference Architecture and Implementation

The	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 responsible	 for	 the	 RAINBOW	
ecosystem	needs	for	resilient	data	storage	in	a	dynamic	fog	environment.	To	this	end,	the	
service	provides	a	distributed	solution	comprised	of	instances	communicating	with	each	
other	 in	 a	 peer-to-peer	 fashion	 departing	 from	 the	 leader-worker	 paradigm;	 still,	 the	
system	 behaves	 -in	 the	 eyes	 of	 its	 users-	 as	 a	 single	 coherent	 cluster.	 The	 various	
components	that	are	provided	make	the	data	exchange	with	external	components	and	
users	easy	to	execute	with	full	ACID	compliance	during	database	operations.	
	
The	service	builds	upon	a	complete	distributed	database	management	system	and	more	
specifically	 Apache	 Ignite4	 with	 the	 implementation	 of	 different	 instances	 and	
components	fully	supporting	the	RAINBOW	requirements.		
	
For	the	Apache	Ignite	DBMS,	there	are	two	distinct	instance	types	that	are	available	and	
applicable	to	the	RAINBOW	ecosystem	settings:	
	

• Server	 instances:	 this	 type	 of	 instance	 is	 responsible	 for	 data	 ingestion	 and	
storage.	The	instance	is	part	of	the	RAINBOW	mesh	stack	and	is	located	on	every	
fog	node	where	the	stack	is	deployed.	Its	main	job	is	to	store	the	node’s	monitoring	
data	either	 locally	or	 remotely	based	on	 the	data	placement	algorithms.	 It	 also	
takes	part	in	the	ingestion	and	extraction	tasks	of	user-application	data	as	well	as	
the	caching	of	the	network	routing	tables	in	a	distributed	data	store.	

	
4	https://ignite.apache.org/		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 23 of 76

Copyright © Rainbow Consortium Partners 2021

• Client	 instance(s):	 This	 type	 of	 instance	 is	 responsible	 for	 data	 exchange	 and	
placement.	The	instance	is	deployed	either	on	resource-rich	fog	nodes	or	cloud	
nodes	and	its	main	job	is	to	re-distribute	the	stored	data	on	the	Server	instances	
based	on	resource	congestion,	networking	issues	and	query	execution	variables.	
Finally,	the	client	instance	is	also	responsible	for	mass	data	extraction	using	minor	
preprocessing	functions.	

	
Figure	2	presents	an	abstract	overview	of	the	instances	and	components	interaction	for	
the	Data	Storage	and	Sharing	service.		

	
Figure	2:	High-level	overview	of	instances	and	components	of	the	Distributed	Data	Storage	and	Sharing	service	

	

The	main	components	(and	functionality)	of	the	RAINBOW	Distributed	Data	Storage	and	
Sharing	service,	are	the	following:	
	

• Data	ingestion:	This	component	is	part	of	the	Server	instances	and	is	responsible	
for	the	storage	of	 incoming	(monitoring)	data.	Data	are	stored	both	 in-memory	
and	persistently	up	to	a	user-specified	time	period	which	constitute	the	latest	and	
historical	data	respectively.	The	data	are	stored	locally	unless	the	placement	has	
changed	due	to	the	Client	instance	re-distribution	algorithms.	Also,	the	ingestion	
component	is	responsible	for	storing	any	user-application	data	in	the	partitioned	
in-memory	store.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 24 of 76

Copyright © Rainbow Consortium Partners 2021

• Data	extraction:	This	 component	 is	available	 for	both	 instances	with	different	
extraction	 mechanisms.	 Its	 main	 job	 is	 to	 make	 the	 stored	 data	 available	 to	
authorized	services	and	users.	On	the	Server	instances,	the	component	extracts	the	
locally	stored	data	from	both	the	in-memory	cache	and	the	persistent	storage.	On	
the	Client	instances,	the	component	can	extract	data	from	every	available	Server	
instance	depending	on	the	incoming	query.	Finally,	the	Client	extraction	can	also	
provide	the	requesting	services	with	results	stemming	from	quick	processing	of	
the	stored	data,	e.g.	the	average	CPU	load	for	every	fog	node.	The	Distributed	Data	
Processing	service	(introduced	in	Chapter	4)	uses	this	component	to	obtain	access	
to	real-time	monitoring	data.	

• Data	 rebalancing:	 This	 component	 is	 responsible	 for	 the	 placement	 and	 re-
distribution	 of	 the	 stored	 monitoring	 data.	 The	 geo-aware	 algorithms	
continuously	re-assess	the	status	of	the	fog	nodes	and	decide	whether	there	is	a	
need	to	partition	and/or	replicate	the	local	data	of	a	fog	node.	The	algorithms	take	
into	 consideration	 both	 the	 node’s	 resource	 and	 network	 utilization	 and	 the	
analytics	agent	placement	to	decide	the	source	and	the	target	nodes	for	the	data	
movement.	

3.2.1 Apache Ignite

The	 basis	 of	 the	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 the	 database	
management	 system	 itself.	 To	 this	 end,	 Apache	 Ignite	 was	 chosen	 as	 the	 distributed	
database	that	can	be	used	as	a	main-memory	database	and	supports	different	persistent	
storage	options.	Ignite	provides	different	ways	to	store	and	access	data.	
	
Ignite,	as	previously	mentioned,	has	3	different	types	of	instances,	Server,	Client	and	Thin	
Client.	 Server	 instances	 are	 mainly	 responsible	 for	 storing	 data.	 Client	 instances	 can	
access	stored	data	and	either	perform	computations	or	query	the	data.	Thin	clients	are	
smaller	versions	of	the	Client	type	that	attach	to	a	specific	node	for	minor	computations	
and	querying.		
	
Clustering	 in	 Ignite	 uses	 a	 decentralized	 approach	 without	 the	 support	 of	 the	
master/slave	paradigm.	A	node	can	enter	or	 leave	a	cluster	without	the	permission	of	
another	node.	Ignite	provides	different	methods	to	help	each	node	recognize	the	rest	of	
the	nodes	 in	 the	 cluster	 and	notify	 everyone	when	 a	new	one	 enters	 the	 cluster.	 The	
number	of	nodes	can	go	up	to	thousands	preserving	linear	performance.		
	
Ignite	 provides	 two	 ways	 to	 store	 data	 with	 caches.	 The	 first	 one	 is	 the	 Key-Value	
paradigm	whilst	the	second	one	can	use	specified	custom	schemas	on	the	caches	for	SQL-
like	operations.	Also,	each	cache	has	3	different	modes.	The	first	one	is	the	LOCAL	mode	
in	 which	 the	 data	 are	 stored	 locally	 and	 can	 only	 be	 accessed	 by	 the	 specific	 Server	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 25 of 76

Copyright © Rainbow Consortium Partners 2021

instance	that	stored	them	or	by	a	Thin	Client	attached	to	that	Server.	The	second	mode	is	
the	PARTITIONED	cache	which	partitions	the	data	to	the	different	server	nodes	based	on	
some	criteria.	The	criteria	can	be	custom-made.	The	final	mode	is	the	REPLICATED	cache	
which	replicates	every	data	point	to	a	pre-specified	number	of	nodes.	
		
Each	 instance	can	run	custom-made	services	depending	on	the	needs	of	 the	user.	The	
deployment	 can	 be	 achieved	 either	 by	 using	 custom	 instance	 filters	 or	 by	 providing	
deployed	 instances	 for	 each	 service.	 An	 instance	 can	 access	 the	 service	 even	 when	
deployed	on	a	different	(fog)	node.	

3.2.2 DBMS Comparison

To	 further	 elaborate	 on	 the	 choice	 of	 Apache	 Ignite	 an	 extended	 investigation	 of	 the	
different	distributed	in-memory	DBMSes	was	completed.	The	results	of	the	investigation	
are	briefly	presented	in	Table	4:	Distributed	in-memory	database	qualitative	comparison	
where	the	top	three	(to	date)	DBMS	solutions	are	compared	based	on	the	properties	that	
involve	the	RAINBOW	Distributed	Data	Storage	and	Sharing	service’s	requirements.		
	

Table	4:	Distributed	in-memory	database	qualitative	comparison	

	
Redis	 Hazelcast	IMDG	 Apache	Ignite	

ACID	
compliance	

Not	always	
guaranteed	

Not	always	
guaranteed	

Full	support	for	
distributed	ACID	
transactions	

Cluster	
model	

Leader-worker	 All	nodes	are	equal	 All	nodes	are	equal	

Persistence	 Yes	 Yes	 Yes	(optional)	

Consistency	 Not	guaranteed	 Eventually	consistent	 Yes	(if	persistence	is	
enabled)	

Data	sharing	 Only	replicated	and	
partitioned	data	

Only	replicated	and	
partitioned	data	

Supports	replicated,	
partitioned	and	local	

data	
	
As	the	table	presents,	Apache	Ignite	is	the	database	that	presents	the	most	properties	in	
alignment	with	the	service’s	requirements.	It	 is	the	only	system	that	is	fully	compliant	
with	the	ACID	properties	whilst	the	other	two	do	not	guarantee	this	type	of	transactions.	
This	 means	 that	 Ignite	 is	 the	 only	 database	 that	 can	 guarantee	 data	 validity	 despite	
possible	failures	that	may	be	caused	by	the	dynamic	fog	environment.				
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 26 of 76

Copyright © Rainbow Consortium Partners 2021

Persistency	is	available	on	all	three	databases,	but	guaranteed	consistency	is	only	present	
in	Ignite	as	part	of	the	ACID	properties.	Also,	since	every	instance	of	the	service	needs	to	
be	able	to	communicate	with	each	other,	the	leader-worker	paradigm	that	Redis	offers	
imposes	restrictions	that	make	the	communication	difficult.		
	
Finally,	Ignite	is	the	only	DBMS	that	supports	local	storage.	This	means	that	some	or	every	
instance	can	have	a	local	in-memory	and/or	persistence	cache	with	data	available	only	to	
the	instance	itself.	This	also	is	part	of	the	service	requirements	since	the	monitoring	data	
should	be	stored	locally	on	the	fog	node	they	are	involved	with.	The	other	two	databases	
only	support	partitioned	caches	when	working	in	cluster	mode.	
	
From	the	aforementioned	comparison	Apache	Ignite	supports	all	requirements	for	the	
Data	Storage	and	Sharing	service	and	is	the	only	choice	for	the	database	system.		
	

3.2.3 DBMS Benchmarks

To	provide	additional	information	on	the	performance	of	Apache	Ignite,	we	used	the	well-
known	 YCSB	 benchmark	 suite	 [51],	 which	 is	 a	 standard	 framework	 to	 assist	 in	 the	
evaluation	 of	 different	 cloud-enable	 DBMS	 systems.	 The	 benchmarks	 compare	 Ignite	
against	Redis.	
	
YCSB	includes	a	common	set	of	workloads	for	evaluating	the	performance	of	different	
"key-value"	and	"cloud"	serving	stores.	It	supports	benchmarking	more	than	40	database	
systems,	 including	 Cassandra,	 Couchbase,	 HBase,	 MongoDB,	 PostgreSQL,	 Redis,	
DynamoDB,	Ignite	and	others.	The	YCSB	project	effectively	comprises	of	two	things:	
	

• The	YCSB	Client,	an	extensible	workload	generator.	
• The	Core	workloads,	a	set	of	workload	scenarios	to	be	executed	by	the	generator.	

	
The	workloads	 in	 the	core	package	are	a	variation	of	 the	same	basic	application	 type.		
Each	operation	against	the	data	store	is	one	of	the	following:	
	

• Insert:	Inserts	a	new	record.	
• Update:	Updates	a	record	by	replacing	the	value	of	one	field.	
• Read:	Reads	a	record,	either	one	randomly	chosen	field	or	all	fields.	
• Scan:	 Scans	 records	 in	 order,	 starting	 at	 a	 randomly	 chosen	 record	 key.	 The	

number	of	records	to	scan	is	randomly	chosen.	
	
The	following	6	standard	workloads	are	defined	in	YCSB:	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 27 of 76

Copyright © Rainbow Consortium Partners 2021

• Workload	A	(Update	heavy	workload):	this	workload	resembles	a	session	store	
recording	recent	actions.	The	read/update	ratio	is	50/50	and	the	default	data	size	
used	is	1	KB	records	(10	fields,	100	bytes	each,	plus	key).	

• Workload	B	(Read	mostly	workload):	this	workload	resembles	a	photo	tagging	
application.	Adding	a	tag	is	an	update,	but	most	operations	are	to	read	tags.	The	
read/update	ratio	is	95/5,	while	the	default	data	size	is	1	KB	records	(10	fields,	
100	bytes	each,	plus	key).	

• Workload	C	 (Read	only):	 this	workload	 resembles	a	user	profile	 cache,	where	
profiles	are	constructed	elsewhere	(e.g.,	Hadoop).	As	such,	the	read/update	ratio	
is	100/0.	The	default	data	size	is	1	KB	records	(10	fields,	100	bytes	each,	plus	key).	

• Workload	D	(Read	latest	workload):	this	workload	resembles	user	status	updates	
in	 a	 database;	 people	 want	 to	 read	 the	 latest	 information	 that	 is	 stored.	 The	
read/update/insert	ratio	is	95/0/5,	while	the	default	data	size	is	1	KB	records	(10	
fields,	100	bytes	each,	plus	key).	The	insert	order	for	this	is	hashed,	not	ordered.	
The	 "latest"	 items	may	 be	 scattered	 around	 the	 keyspace	 if	 they	 are	 keyed	 by	
userid.timestamp.	A	workload	which	orders	items	purely	by	time,	and	demands	
the	latest,	is	very	different	than	the	workload	here	(which	is	more	typical	of	how	
people	build	systems).	

• Workload	 E	 (Short	 ranges):	 this	workload	 resembles	 threaded	 conversations,	
where	each	scan	 is	 for	 the	posts	 in	a	given	thread	(assumed	to	be	clustered	by	
thread	id).	The	scan/insert	ratio	is	95/5.	The	default	data	size	is	1	KB	records	(10	
fields,	100	bytes	each,	plus	key).	The	insert	order	is	hashed,	not	ordered.	Although	
the	scans	are	ordered,	it	does	not	necessarily	follow	that	the	data	is	inserted	in	
order.	For	example,	posts	for	thread	342	may	not	be	inserted	contiguously,	but	
instead	 interspersed	with	 posts	 from	 lots	 of	 other	 threads.	 The	way	 the	 YCSB	
client	works	is	that	it	will	pick	a	start	key,	and	then	request	a	number	of	records;	
this	works	fine	even	for	hashed	insertion.	

• Workload	 F	 (Read-modify-write	 workload):	 this	 workload	 resembles	 a	 user	
database,	where	user	records	are	read	and	modified	by	the	user	or	to	record	user	
activity.	The	read/read-modify-write	ratio	is	50/50.	The	default	data	size	is	1	KB	
records	(10	fields,	100	bytes	each,	plus	key.	

	
Each	workload	is	comprised	of	a	Load	phase,	where	data	are	inserted	into	the	database	
and	a	Run	phase,	where	data	are	read,	updated,	deleted	and	modified.	Several	metrics	are	
calculated	during	each	phase,	e.g.	throughput,	latency.	
	
Since	our	purpose	was	to	assess	both	the	performance	and	scalability	of	the	Ignite	and	
Redis	distributed	databases,	we	executed	all	workloads	on	network	configurations	of	6,	
10,	14	and	20	nodes.	We	used	both	the	Ignite	and	Ignite-SQL	variants	for	Ignite.	At	the	
same	 time,	we	 ran	Redis	with	 two	different	 configurations:	 the	 first,	where	only	data	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 28 of 76

Copyright © Rainbow Consortium Partners 2021

sharding	 is	performed	across	nodes,	with	no	worker	nodes,	 and	 the	 second,	with	one	
worker	node	assigned	to	each	leader	node,	for	data	duplication,	as	well	as	sharding	of	
data	across	leader	nodes.	All	workloads	were	executed	for	performing	1000,	5000,	10000	
and	20000	operations,	both	during	the	Load	phase	as	well	as	the	Run	phase.	Both	Ignite	
and	Redis	were	run	with	 in-memory	configurations	only,	 for	all	 tests	with	partitioned	
caches	and	full	replication.	
	
As	 our	 testbed,	 we	 used	 the	 Fogify	 fog	 computing	 emulator5	 (developed	 by	 UCY)	 to	
rapidly	 model	 and	 configure	 the	 experiment	 scenarios,	 where	 an	 emulated	 geo-
distributed	environment	was	deployed.	Nodes	were	setup	as	Docker	 image	containers	
with	1GB	RAM	and	single	core	processor	clocked	at	1GHz,	and	we	restricted	the	(internal)	
network	 interface	 for	 each	 container	 to	 a	 bandwidth	 of	 10000Mbps	 and	 a	 network	
latency	of	3ms.	We	ran	all	tests	in	a	system	equipped	with	an	Intel	Xeon	CPU	E5-2620	v2	
@	2.10GHz	and	64	GB	of	RAM.	Neither	 the	CPU	nor	 the	RAM	of	 the	host	system	were	
saturated	at	any	point	during	the	execution	of	workloads	for	any	number	of	nodes.	
	

	
Figure	3:	Ignite	and	Redis	comparison	for	workload	A	of	YCSB	

Indicative	 results	 from	 the	 executions	 of	 a	 subset	 of	 the	workloads	 are	 presented	 in	
Figure	 3	 and	 Figure	 4.	 The	 behavior	 is	 similar	 for	 the	 rest	 of	 the	 workloads.	 Every	

	
5	https://ucy-linc-lab.github.io/fogify/		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 29 of 76

Copyright © Rainbow Consortium Partners 2021

experiment	 was	 run	 four	 times	 for	 completeness	 and	 the	 results	 of	 each	 run	 are	
presented.	The	 chosen	workloads	are	A	and	B	which	 involve	heavy	updates	 and	 read	
operations,	since	this	will	be	the	case	and	the	service’s	job	on	the	RAINBOW	platform.	
	
In	most	cases,	Redis	seems	to	outperform	Ignite	by	at	least	a	small	margin.	It	also	seems	
to	be	the	case	that	the	results	for	Redis	show	less	deviation	than	Ignite	as	the	respective	
throughput	values	are	more	closely	packed.	This	is	becoming	more	evident	as	the	number	
of	nodes	increases.	The	Ignite-SQL	behavior	seems	to	be	slightly	less	efficient	than	simple	
Ignite.	 In	 addition,	 the	 two	 different	 configurations	 of	 Redis	 (no	worker	 nodes	 and	 1	
worker	node	per	leader)	show	very	similar	results.	
	
However,	as	the	number	of	operations	increases,	it	seems	that	Ignite	scales	better	than	
Redis.	 Even	 if,	 in	 most	 cases,	 Ignite	 does	 not	 reach	 the	 performance	 of	 Redis,	 the	
performance	gap	decreases	as	the	number	of	operations	increases.	The	performance	of	
Redis	 seems	 to	 reach	 a	 plateau,	while	 it	 appears	 that	 is	 possible	 for	 Ignite	 to	 further	
improve	performance	with	an	even	larger	 increase	for	the	number	of	operations.	This	
improvement	provides	evidence	that	Ignite	behaves	better	in	dynamic	environments,	like	
the	RAINBOW	ecosystem,	where	many	operations	are	needed.		
	

	
Figure	4:	Ignite	and	Redis	comparison	for	workload	B	of	YCSB	

	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 30 of 76

Copyright © Rainbow Consortium Partners 2021

3.2.4 Server and Client Instances

The	 RAINBOW	 Data	 Storage	 and	 Sharing	 service	 implements	 both	 Server	 and	 Client	
instances	and	deploys	them	on	the	different	nodes	based	on	their	types.	Every	Fog	node	
with	the	RAINBOW	mesh	stack	has	one	Server	instance.	On	the	other	hand,	Cloud	nodes	
and	optionally	resource-rich	Fog	nodes	have	the	Client	instances	deployed.	
	
Each	 Server	 instance	 is	 responsible	 for	 storing	 the	 local	 (monitoring)	 data	 that	 are	
ingested	through	the	fog	node’s	Monitoring	Agent.	The	instance	contains	3	different	local	
caches.	The	first	one	is	a	key-value	cache	that	is	purely	in-memory	and	stores	only	the	
latest	values	for	the	monitoring	metrics.	This	cache	is	used	for	quick	I/O	of	the	metrics	
for	the	different	RAINBOW	services	that	require	them,	i.e.	the	analytics	agent.	The	second	
cache	 is	 a	key-value	one	with	SQL-like	properties	 like	 indices	on	different	 fields.	This	
cache	is	used	to	persistently	store	the	historical	values	of	the	monitoring	metrics	up	to	a	
user-specified	 time	 range.	The	 time	 range	 is	used	 to	 limit	 the	volume	of	data	and	 the	
memory	 resources	 needed	 for	 the	 storage.	 A	 third	 cache	 with	 SQL-like	 properties	 is	
available	with	persistency	enabled	to	store	metadata	the	mapping	of	a	metric	to	an	entity.	
Figure	5	presents	the	schemas	for	each	cache	with	the	keys	being	above	the	line	and	the	
values	below.	
	

	
Figure	5:	Local	data	caches	schemas	

Finally,	a	partitioned	in-memory	key-value	cache	is	available	for	storing	and	extracting	
user-application	 data	 and	 caching	 the	 networking	 routing	 tables.	 All	 Server	 instances	
have	access	to	this	cache	with	the	data	being	distributed	between	them.	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 31 of 76

Copyright © Rainbow Consortium Partners 2021

The	second	type	of	instance	is	called	Client	and	is	deployed	mainly	to	cloud	nodes.	This	
type	of	instance	does	not	store	any	data	and	its	main	responsibility	is	the	control	of	the	
data	 placement.	 The	 instance	 through	 the	 use	 of	 appropriate	 algorithms,	 decides	 the	
partitioning,	replication	and	general	placement	of	data	from	a	source	Server	instance	to	a	
target	one.	At	the	time	of	writing	the	deliverable,	 the	data	movement	mechanisms	are	
implemented	whilst	the	techniques	that	take	into	consideration	the	analysis	queries	and	
resource	 and	 network	 utilization	 are	 partially	 implemented.	Whenever	 a	 decision	 for	
data	movement	is	taken,	the	Client	communicates	through	an	internal	service	with	the	
source	Server	which	in	turn	moves	the	necessary	data	to	the	target.	
	
A	 second	 job	 of	 the	 Client	 is	 to	 act	 as	 an	 intermediate	 on	 the	 data	 extraction.	 The	
extraction	is	available	locally	by	querying	the	respective	Server	 instance	or	globally	by	
querying	the	Client.	The	Client	can	accept	authorized	queries	that	involve	more	than	one	
instances	and	through	the	respective	internal	services	communicates	with	the	instances	
at	interest	to	gather	the	required	data.	The	result	can	either	be	the	whole	set	of	data	or	a	
processed	result,	 i.e.	 the	average	CPU	 load	of	all	nodes.	Also,	 the	Client	 instances	have	
direct	access	to	all	partitioned	caches	for	the	routing	tables	and	user-application	data.	
	

3.2.5 Components

The	first	component	 is	responsible	for	the	data	ingestion.	This	 is	available	only	on	the	
Server	instances	which	are	storing	the	data.	This	component	is	available	through	a	REST	
API	and	every	service	that	needs	to	store	data	and	is	authorized	to	do	so	can	use	it	by	
passing	 the	 data	 in	 a	 json	 format.	 The	 ingestion	 afterwards	 stores	 the	 data	 in	 the	
necessary	caches.	If	the	data	come	from	the	Monitoring	Agent,	they	are	stored	both	on	
the	latest	cache	overwriting	the	values	and	on	the	historical	one	for	persistent	storage.	
On	any	other	case	the	data	are	written	to	the	specified	key-value	in-memory	cache	based	
on	their	usage.	
	
The	second	component	is	responsible	for	data	extraction	based	on	some	queries	and	is	
available	through	a	REST	API.	The	data	extraction	component	is	available	from	both	the	
Server	and	the	Client	instances	with	similar	functionality.	
	
On	the	Server	instances	the	component	takes	a	query	and	outputs	the	resulting	local	data.	
The	queries	can	have	different	filters	such	as	the	entity	or	metric	ids	and/or	a	time	period.	
On	 the	 Client	 instances	 the	 queries	 have	 an	 additional	 variable	 which	 is	 the	 node	 in	
question.	The	user	can	either	get	data	from	specified	nodes	or	from	every	available	one.	
Also,	 the	output	 from	the	Client’s	data	extraction	can	be	an	aggregated	value	over	 the	
monitoring	data.		
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 32 of 76

Copyright © Rainbow Consortium Partners 2021

Finally,	the	data	extraction	component	works	in	a	similar	way	with	the	user-application	
data	cache	and	the	networking	routing	table	cache.	The	difference	in	this	case	is	that	there	
are	no	filters	on	the	queries	since	only	a	custom	key-value	pair	is	stored	and	is	agnostic	
to	the	Data	Storage	service.	
	
The	third	important	component	is	the	data	rebalancing	one	and	is	deployed	on	both	types	
of	instances.	This	component	comprises	different	internal	services	based	on	the	type	of	
instance.	In	the	Server	 instances,	the	component	is	responsible	for	the	data	movement	
from	the	local	Server	to	a	remote	one.	The	implemented	choices	for	movement	are	either	
the	partitioning	of	the	data	based	on	a	filter	or	a	full	replication	of	them	to	the	target.	
	
On	 the	Client	 side	 the	 component	 is	 responsible	 for	 deciding	whether	 a	movement	 is	
necessary	 as	 well	 as	 the	 source	 and	 target	 destination.	 This	 decision	 is	 taken	 by	
considering	factors	such	as	a	fog	node’s	resource	utilization,	e.g.	CPU	load	and	memory	
consumption,	the	network	connection	and	limits	between	the	fog	nodes	as	well	as	the	
analytics	queries	 and	 the	placement	of	 the	Analytics	Workers.	These	mechanisms	are	
partly	implemented.	
	

3.3 Interaction with other RAINBOW Services and Components

The	Data	Storage	and	Sharing	service	interacts	with	five	RAINBOW	components	of	the	
platform	 as	 well	 as	 the	 user	 application(s)	 running	 on	 the	 control	 plane	 through	 an	
exposed	REST	API.	The	access	to	data	must	be	authorized	before	processing	the	queries.	
The	authorization	 is	part	of	 the	attestation/security	service	and	 is	documented	 in	 the	
deliverables	of	WP2.	
	
In	particular,	the	Data	Storage	and	Sharing	service	interacts	with	the	following	RAINBOW	
components:	
	

• Monitoring	Agent:	This	component	utilizes	the	data	storage	to	store	the	locally	
extracted	monitoring	data	based	on	the	monitoring	data	model	and	schema.	Both	
a	monitoring	and	a	data	storage	instance	are	deployed	together	on	each	fog	node	
and	whenever	the	metrics	are	extracted	the	Agent	"pushes"	them	through	the	API	
to	the	local	data	storage	instance.	The	latest	monitoring	data	are	stored	as	real-
time	data	in	the	in-memory	cache	for	fast	querying	whilst	also	persistently	saved	
along	with	the	rest	of	the	historical	data.		Through	the	Monitoring	API,	the	Storage	
provides	users	with	secure	access	to	both	real-time	and	historic	monitoring	data	
by	authorized	entities	via	both	a	push	and	pull	data	delivery	interface.

• Distributed	 Data	 Processing	 Service.	 This	 component	 interconnects	 the	
collaborating	 Analytics	 Workers	 deployed	 over	 the	 mesh	 network	 of	 an	 IoT	
application’s	 fog	continuum	and	utilizes	the	data	storage	to	continuously	query	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 33 of 76

Copyright © Rainbow Consortium Partners 2021

both	 the	 monitoring	 and	 application-specific	 data	 so	 that	 high-level	 analytic	
insights	 expressed	 through	 user-expressed	 continuous	 analytic	 queries	 can	 be	
derived.	The	data	are	either	queried	from	the	instances	themselves	or	the	client	
instance	for	the	specified	stored	data.

• Attestation/Security	Service.	The	Data	Storage	and	Sharing	service	cooperates	
with	 the	 attestation	 and	 security	 service	 for	 authentication.	 Every	 data	 access	
request	must	 first	be	authorized	 in	order	 to	be	processed.	Both	 the	 requesting	
components	 and	 user-application(s)	 should	 be	 part	 of	 the	 control	 plane	 and	
therefore	authenticated	by	the	security	service.	

• Side-Car	Proxy.	The	Data	Storage	and	Sharing	service	utilizes	the	fog	node’s	side-
car	proxy	 in	order	 to	extract	 the	routing	 tables	used	 for	encrypted	networking	
between	collaborating	entities	comprising	the	RAINBOW	overlay	mesh	network.		
Each	data	storage	instance	extracts	and	stores	the	local	node’s	routing	table	for	
further	querying.	In	addition,	the	tables	are	updated	regularly	from	the	network	
components	to	be	fully	aligned.

• Orchestrator	 Service:	 The	 SLO	 enforcement	 component	 or	 the	 RAINBOW	
Orchestration	service,	utilizes	real-time	and	historic	monitoring	data	to	derive	if	
deployed	applications	and	the	underlying	virtual	and	containerized	infrastructure	
must	 expand	 or	 contract	 in	 order	 to	 meet	 current	 demand,	 achieve	 targeted	
performance	and	efficiently	utilize	provisioned	resources.	

	

3.4 API and Documentation

Internally,	the	RAINBOW	Distributed	Data	Storage	and	Sharing	service	interacts	using	the	
internal	 Ignite	 components	 deployed	 as	 independent	 (micro-)	 services,	 each	 on	 a	
Dockerized	 container.	Each	 instance	 can	 call	 a	 service	of	 another	one	even	 if	 it	 is	not	
implemented	in	it,	e.g.	a	Client	instance	can	call	the	internal	data	extraction	micro-service	
of	a	Server	instance	to	quickly	query	the	local	data.		
	
All	internal	micro-services	are	based	on	Java	interfaces	with	pre-defined	public	functions	
that	 are	 visible	 to	 every	 Ignite	 instance.	 All	 three	 implemented	 components	 for	 data	
ingestion,	extraction	and	rebalancing	are	built	on	top	of	these	micro-services	and	can	be	
called	from	members	of	the	distributed	database	cluster.		
	
Finally,	the	communication	between	the	nodes	is	executed	using	specific	identifiers	that	
the	cluster	imposes	on	each	instance	whenever	it	joins	in.	Every	instance	is	discoverable	
by	other	instances	in	the	cluster	and	can	be	identified	either	by	the	hostname	and	address	
or	 by	 the	 unique	 identifier.	 This	 process	makes	 the	 use	 of	micro-services	 for	 specific	
nodes	easier	to	handle.	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 34 of 76

Copyright © Rainbow Consortium Partners 2021

On	 the	 other	 hand,	 for	 external	 connections	 a	 REST	 API	 has	 been	 implemented.	 The	
external	connections	include	only	the	components	of	data	ingestion	and	extraction	and	
not	 the	 data	 rebalancing	 one	 which	 works	 internally	 in	 the	 database	 cluster.	 Every	
interested	RAINBOW	service	has	access	to	their	respective	data	caches	to	write	and/or	
read	data	based	on	the	permissions.		
	
The	REST	API	allows	POST	requests	through	a	port	on	every	node	it	is	deployed	at.	For	
the	 Server	 instances	 there	 are	 two	 available	 request	 routes,	 the	 first	 one	 is	 for	 data	
ingestion	whilst	the	second	one	is	for	data	extraction.	Both	of	them	write	and	read	data	
from	the	local	caches.	The	input	for	each	request	is	a	json	format	with	the	necessary	fields	
that	act	as	filters	on	the	queries.		
	
On	the	ingestion	requests	a	list	of	the	input	metrics	is	necessary	along	with	the	essential	
fields.	This	list	needs	to	be	under	the	“monitoring”	field	to	distinguish	the	monitoring	data	
from	other	possible	 user-application	data.	An	 example	 json	 input	 is	 available	 in	Code	
Snippet	1.	
	
For	the	extraction	part	the	requests	have	optional	fields	that	are	used	as	the	query	filters.	
These	fields	include	the	metric	id,	the	entity	id	and	a	Boolean	variable	that	represents	
whether	the	latest	or	historical	data	are	included.	When	historical	data	are	needed	two	
more	fields	that	represent	the	time	period	of	extraction	are	required.	Two	example	json	
inputs	for	data	extraction	are	available	in	Code	Snippet	2	and	Code	Snippet	3.	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 35 of 76

Copyright © Rainbow Consortium Partners 2021

{"monitoring": [
 {
 "entityID": "entity1",
 "entityType": "type1",
 "metricID": "metric1",
 "name": "name1",
 "units": "metric units",
 "desc": "first metric",
 "group": "group1",
 "minVal": 5,
 "maxVal": 10,
 "higherIsBetter": true,
 "val": 6,
 "timestamp": 2611318068000
 },
 {
 "entityID": "entity2",
 "entityType": "type2",
 "metricID": "metric2",
 "name": "name2",
 "units": “metric2 units",
 "desc": "second metric",
 "group": "group2",
 "minVal": null,
 "maxVal": 10,
 "higherIsBetter": true,
 "val": 6,
 "timestamp": 2611318068001
 }
]}	

Code	Snippet	1	

{
 "metricID": ["metric1"],
 "from": 2611318068000,
 "to": 4611318068000,
 "latest": false
}

Code	Snippet	2	

{
 "entityID":["entity1","entity2"],
 "latest": true
}	

Code	Snippet	3	

The	complete	 source	code	of	 the	Distributed	Data	Storage	and	Sharing	service	 can	be	
found	in	the	RAINBOW	source	code	repository:	
	

https://gitlab.com/rainbow-project1/rainbow-storage		 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 36 of 76

Copyright © Rainbow Consortium Partners 2021

4 Distributed Data Processing Service

In	 this	 Section,	 we	 present	 a	 comprehensive	 documentation	 report	 introducing	 the	
reference	architecture,	exposed	functionality	and	implementation	details	referring	to	the	
Distributed	Data	Processing	Service.	
	

4.1 Requirements and Exposed Functionality

Based	on	the	user	groups	documented	in	D1.1,	the	identified	users	interacting	with	the	
RAINBOW	Distributed	 Data	 Processing	 Service	 are	 presented	 in	 Table	 5	 and	 are	 the	
following:	
	

Table	5:	RAINBOW	Distributed	Data	Processing	service	and	interacting	user	groups	

User	Group	 Interaction	with	RAINBOW	Distributed	Data	Processing	
Service	

Service	
Operator/Owner	

Interacts	 with	 the	 RAINBOW	 Distributed	 Data	 Processing	
Service	by	selecting	certain	optimization	strategies	for	the	to-be	
executed	 analytics	 jobs	 based	 on	 the	 business	 aspects	 of	 the	
deployed	 IoT	 application.	 This	 is	 performed	 through	 the	
Analytics	Perspective	of	the	RAINBOW	Dashboard.	

Service	
Developer	

Interacts	 with	 the	 RAINBOW	 Distributed	 Data	 Processing	
Service	by	developing	the	actual	analytics	job(s)	that	the	Service	
Operator/Owner	 has	 selected	 strategies	 for	 job	 optimization.	
This	job	can	either	be	developed	using	the	underlying	big	data	
engine’s	 programming	model	 or	 via	 the	 RAINBOW-supported	
high-level	 declarative	 analytics	 query	 model	 (T4.3).	 In	 both	
cases,	 analytic	 jobs	 are	 submitted	 through	 the	 Analytics	
Perspective	of	the	RAINBOW	Dashboard.	

RAINBOW	
Developer	

Interacts	 with	 the	 RAINBOW	 Distributed	 Data	 Processing	
Service	by	developing	ready-to-use	schedulers,	that	are	capable	
of	optimizing	analytic	 jobs	based	on	user-desired	optimization	
strategies	 and	 trade-offs,	 including,	 but	 not	 limited	 to,	
performance,	latency,	energy-consumption	and	data	quality.	

Fog	
Infrastructure	
Provider	

Interacts	 with	 the	 RAINBOW	 Distributed	 Data	 Processing	
Service	 as	 the	 entity	 providing	 the	 fog	 offerings	 hosting	 the	
RAINBOW-enabled	 IoT	 applications	 in	 order	 to	 assess	 meta-

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 37 of 76

Copyright © Rainbow Consortium Partners 2021

analytics	relevant	 to	 the	execution	of	analytic	 jobs	to	optimize	
the	quality	of	service	of	the	provisioned	fog	resources.	

	

4.1.1 Functional Requirements

The	RAINBOW	system	requirements,	documented	in	D1.1,	referring	to	the	Distributed	
Data	Processing	Service	are	the	following:	
	

Table	6:	System-wide	RAINBOW	function	requirements	relevant	to	Distributed	Data	Processing	service	

Req.	No.	 Requirement	

FR.23	 Analytics	execution	mode	

	
To	 satisfy	 the	 aforementioned	 system	 requirements,	 while	 also	 adhering	 to	 the	 key	
technology	 axes	 of	 the	 RAINBOW	Data	Management	 Layer,	 as	 presented	 in	 D1.2,	 the	
following	functionality	must	be	exposed	by	the	RAINBOW	Distributed	Data	Processing	
Service.	
	

ID	 FR.DPS.1	

Title	 Execute	analytic	tasks	over	heterogenous	fog	nodes	

Description	 The	RAINBOW	Distributed	Data	Processing	Service	must	provide	
the	means	for	its	Analytic	Workers	to	execute	analytic	tasks	in	place	
and	over	heterogeneous	fog	nodes.	This	means	that	fog	nodes	may	
be	configured	with	a	wide	range	of	resource	capabilities,	while	the	
configuration	 of	 the	 Analytics	 Workers	 must	 be	 done	 with	 full	
transparency	and	no	additional	effort	from	RAINBOW	users	(zero-
conf).	

Exposed	
Functionality	

The	 Distributed	 Data	 Processing	 Service’s	 Analytics	 Workers	 are	
designed	 as	 configurable	 long-running	 daemons	 that	 upon	
instantiation	 are	 able	 to	 acknowledge	 how	 they	 should	 be	
parameterized	 so	 as	 to	 provision	 a	 dynamic	 set	 of	 lightweight	
threads	(executors),	even	at	 runtime,	dedicated	 to	one	(or	more)	
fine-grained	analytic	task(s).	This	means	that	it	is	perfectly	natural	
for	the	Analytics	Workers	of	a	fog	deployment	to	feature	different	
memory,	compute	and	number	of	processing	cores	reserved	from	
the	underlying	host	(fog	node).			

	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 38 of 76

Copyright © Rainbow Consortium Partners 2021

ID	 FR.DPS.2	
Title	 Deploy	analytic	jobs	in	geo-distributed	fog	topologies	
Description	 The	Distributed	Data	Processing	Service	must	be	able	to	deploy	and	

execute	analytic	jobs	over	geo-distributed	environments	and	even	
function	 under	 heterogeneous	 networking	 settings	 between	 the	
Analytics	Workers	and	the	Analytics	Executor.	

Exposed	
Functionality	

The	 configuration	 of	 the	 topology	 that	 will	 execute	 continuous	
analytics	jobs	is	handled	by	the	Analytics	Executor	and	all	network	
mappings	 between	 Analytics	 Workers	 are	 performed	 via	 the	
RAINBOW	 overlay	mesh	 network	 so	 that	 requests	 for	 resources	
(e.g.,	 fog	 nodes)	 spanning	 across	 different	 networks	 can	 be	
performed	 via	 re-active	 data	 routing.	 In	 turn,	 depending	 on	 the	
optimization	strategy	requested	by	the	user,	the	Analytics	Scheduler	
will	attempt	 to	 reduce	 the	movement	of	data	across	networks	 to	
ensure	low	query	latency	by	avoiding	straggling	tasks	due	to	query	
operators	requiring	data	from	nodes	across	(network)	“distant”	fog	
nodes	(see	FR.DPS.3).	

	

ID	 FR.DPS.3	

Title	 Analytics	task	placement	based	on	different	job	optimization	
strategies	for	geo-distributed	fog	realms	

Description	 The	RAINBOW	Distributed	Data	Processing	Service	should	provide	
users	 with	 the	 flexibility	 of	 selecting	 the	 policy/policies	 under	
which	the	task	placement	and	execution	of	their	analytics	jobs	will	
be	 optimized	 by	 the	 Analytics	 Scheduler.	 Specifically,	 RAINBOW	
must	 support	 a	 wide	 range	 of	 schedulers,	 each	 of	 which	 are	
embedded	with	an	algorithmic	process	 capable	of	optimizing	 the	
task	 placement	 of	 IoT	 applications	 deployed	 even	 in	 geo-
distributed	fog	environments.		

Exposed	
Functionality	

The	 RAINBOW	 Distributed	 Data	 Processing	 Service	 exposes	 an	
extensible	 scheduler	 interface	 that	 eases	 the	 design	 and	
implementation	 of	 analytic	 job	 schedulers	 that	 can	 optimize	 the	
placement	 and	 execution	 of	 analytic	 tasks	 by	 the	 underlying	
Analytics	Workers	 that	 are	 deployed,	 even,	 on	 heterogeneous	 fog	
nodes.	 Hence,	 upon	 the	 configuration	 of	 the	 Distributed	 Data	
Processing	 Service,	 the	 Analytics	 Scheduler	 is	 realized,	 with	 the	
respected	algorithmic	process	for	runtime	task	placement	and	can	
support	 even	 streaming	 analytics	 jobs.	 A	 realized	 placement	
algorithm	takes	as	input	the	service	graph,	nodes’	ids,	analytic	job	
tasks,	 etc.,	 while	 the	 system	 expects	 as	 output	 a	 well-defined	
placement	 strategy.	 Despite	 the	 design	 and	 implementation	 of	 5	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 39 of 76

Copyright © Rainbow Consortium Partners 2021

novel	 scheduling	 algorithms,	 since	 the	 optimization	 can	 take	
various	 forms	 and	 be	 dependent	 on	 different	 KPIs	 of	 an	
application’s	 business	 aspects,	 the	 RAINBOW	 Distributed	 Data	
Processing	Service	provides	users	with	the	ability	to	“plug-in”	their	
own	 implementations	 with	 custom	 tailored	 optimizations	 that	
adhere	to	the	RAINBOW	scheduler	interface.	

	

ID	 FR.DPS.4	

Title	 Operation	under	dynamic	topology	adaptation	

Description	 The	 Distributed	 Data	 Processing	 Service	 must	 be	 able	 to	
acknowledge	dynamic	alterations	of	the	underlying	infrastructure.	
These	alterations	may	take	various	forms	and	include	the	change	of	
provisioned	resources,	 including	 the	alteration	of	 the	current	 fog	
node(s)	resources	and/or	the	addition/removal	of	fog	nodes.		

Exposed	
Functionality	

The	 Distributed	 Data	 Processing	 Service’s	 Analytics	 Executor	 is	
designed	 to	 acknowledge	 dynamic	 changes	 to	 the	 underlying	
topology	by	continuously	assessing	the	status	of	the	infrastructure	
for	 the	resources	allocated	 to	 the	analytics	 job	via	 the	RAINBOW	
Resource	 Manager.	 If	 a	 change	 has	 occurred	 to	 the	 underlying	
deployment,	then	the	Analytics	Scheduler	is	subsequently	informed	
so	 that	 the	 continuous	 assessment	 of	 the	 task	 placement	
configuration	 is	 updated	 based	 on	 the	 algorithmic	 process	
acknowledging	the	difference	in	both	fog	node	resources	(vertical	
scaling)	and	the	(de-)provisioning	of	fog	nodes	(horizontal	scaling).	

	

ID	 FR.DPS.5	

Title	 Operation	under	unexpected	events	and	extreme	network	
uncertainties	

Description	 The	 Distributed	 Data	 Processing	 Service	 must	 be	 able	 to	 both	
acknowledge	 that	 the	 current	 deployment	 is	 undergoing	
unexpected	 events,	 at	 the	 same	 time,	 continue	 seamlessly	 and	
uninterrupted	 the	 execution	 of	 analytic	 jobs.	 These	 unexpected	
“events”	may	take	various	forms	and	include	sudden	increases	 in	
link/network	 latencies,	 the	 appearance	 of	 link	 failures,	 temporal	
link	 disconnections,	 node	 processing	 saturation	 and	 complete	
device	fail-stops.		

Exposed	
Functionality	

Since	the	increase	of	processing	delay	may	not	be	directly	related	
to	 resource	 saturation	 (see	 FR.DPS.4),	 the	 Analytics	 Executor	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 40 of 76

Copyright © Rainbow Consortium Partners 2021

internally	speculates	the	execution	of	running	jobs	and	tasks	based	
on	historical	statistics.	When	an	incident	or	an	abnormal	situation	
happens,	 the	 Analytic	 Executor	 decides	 if	 the	 alteration	 of	 the	
underlying	 infrastructure	 is	 transient	 or	 permanent.	 In	 the	 first	
case,	 the	system	temporarily	redirects	 the	 load	 from	problematic	
workers	 to	other,	under-utilized,	Analytics	Workers	so	 that	 it	 can	
self-stabilize	under	transient	faults.	If	the	problem	persists	after	a	
considerable	time	interval	(e.g.,	a	node	fail-stop),	then	the	Analytics	
Executor	 will	 consider	 the	 affected	 resources	 to	 be	 permanently	
unavailable	and	the	Analytics	Scheduler	will	be	notified	so	that	the	
algorithmic	 process	 does	 not	 assign	 tasks	 to	 nodes	 based	 on	 the	
aforementioned	faulty	resources.	

	

4.1.2 Non-Functional Requirements

	

ID	 NFR.DPS.1	

Title	 Robustness	

Description	 The	Distributed	Data	Processing	service	must	cope	with	any	potential	
errors	 from	unexpected	 inputs	 and	 faults	during	 the	 execution,	while	
also	continue	 to	work	as	usual	after	an	 interruption	 from	unexpected	
crashes	by	restoring	its	last	valid	state.	

	
ID	 NFR.DPS.2	

Title	 Near	Real-time	Adaptability	

Description	 The	Distributed	Data	Processing	service	must	be	able	to	adapt	itself	to	
the	 demands	 of	 the	 workload	 and	 requirements	 of	 the	 various	
optimization	algorithms	without	degrading	its	performance,	by	adding	
or	 removing	 the	 necessary	 components	 to	 remain	 functional	 and	
produce	in	real-time	or	at	least	near	real-time	analytic	task	placement	
and	execution	decisions.	

	
ID	 NFR.DPS.3	

Title	 Extensibility	

Description	 The	Distributed	Data	Processing	service	must	support	developers	with	
the	means	to	develop	and	“plug-in”	their	own	customized	analytic	 job	
scheduling	algorithms	so	as	 to	optimize	 the	execution	of	analytic	 jobs	
that	 meet	 the	 certain	 optimization	 policies	 that	 the	 user	 deems	 as	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 41 of 76

Copyright © Rainbow Consortium Partners 2021

important	 for	 a	 specific	 job	 executed	 in	 a	 geo-distributed	 fog	
environment.	

	

4.2 Reference Architecture and Implementation

The	Distributed	Data	Processing	 service	 is	 responsible	 for	 the	RAINBOW	ecosystem’s	
needs	for	data	processing	so	that	real-time	analytic	insights	can	be	extracted	from	the	
vast	amounts	of	monitoring	data	collected	from	both	the	underlying	fog	resources	and	
performance	indicators	from	deployed	IoT	applications.	To	this	end,	the	service	provides	
a	 completely	 distributed	 solution	with	 the	 data	 processing	performed	 -in	 place-	 right	
where	the	data	is	generated	so	that	analytic	insights	are	extracted	with	low-latency	and	
with	 the	 collected	 data	 never	 leaving	 the	 overlay	 mesh	 network	 interconnecting	 the	
collaborating	fog	nodes.	
	
To	this	end,	the	Distributed	Data	Processing	service	builds	upon	Apache	Storm6	with	our	
aim	being	to	not	implement	yet	another	distributed	data	processing	engine	but	rather	to	
design	novel	scheduling	algorithms	that	are	decoupled	from	the	underlying	engine	and	
acknowledge	the	unique	settings	found	in	the	majority	of	geo-distributed	environments	
that	IoT	applications	are	deployed	in.	
	

4.2.1 High-Level Logical Overview of Analytics Workflow

Figure	 6	 presents	 a	 comprehensive	 overview	 of	 the	 logical	 interplay	 between	 the	
Distributed	 Data	 Processing	 service	 and	 interacting	 RAINBOW	 components.	 A	 typical	
flow	starts	with	a	Service	Operator7	constructing	a	set	of	analytic	queries	by	following	a	
high-level	 declarative	 language	 (1).	 The	 Analytics	 Editor	 provides	 a	 graphical	 user	
interface	 to	 support	RAINBOW	users	 (e.g.,	 Service	Operators)	 in	 the	 composition	 and	
definition	of	analytic	queries.	Furthermore,	users	are	able	to	introduce	a	set	of	diverse	
optimization	and	constraint	policies	along	with	their	queries.		The	constructs	and	query	
operators	of	this	language	are	presented	in	Chapter	5.	When	the	user	finishes	the	editing,	
the	system	transfers	the	queries	to	the	Analytics	Enabler	module	(2).	What	is	more,	the	
user	has	the	opportunity	to	add,	amend	or	stop	the	execution	of	analytic	queries,	even	at	
runtime,	by	following	the	same	procedure.	
	
With	 the	 analytic	 queries	 in	 hand,	 the	 Analytics	 Enabler	 is	 responsible	 to	 create	 an	
execution	plan	 for	 the	 efficient	 calculation	of	 the	 set	of	queries	on	 the	underlying	 fog	
infrastructure.	 The	 internal	 process	 of	 the	 Analytic	 Enabler	 begins	 with	 parsing	 the	

	
6	https://storm.apache.org/		
7	For	more	information	on	the	identified	User	Roles	of	the	RAINBOW	ecosystem,	please	see	D1.1.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 42 of 76

Copyright © Rainbow Consortium Partners 2021

queries	 and	 forming	 an	 Abstract	 Syntax	 Tree	 (AST)	 for	 each	 query.	 An	 AST	 is	 an	
intermediate	 tree-based	 representation	 in	which	 each	node	 represents	 a	 grammatical	
rule	 of	 the	 language	 and	 every	 leaf	 corresponds	 to	 a	 language's	 symbol.	 A	 query	 is	
syntactically	correct	if	the	Analytic	Enabler	translates	it	without	any	error.	If	all	submitted	
queries	are	correct,	the	Analytic	Enabler	will	then	perform	an	initial	query	optimization	
process.	In	this	step,	the	Analytic	Enabler	finds	correlations	between	the	ASTs	of	different	
queries	and	combines	them	in	order	to	eliminate	the	re-computations	and	minimize	data	
transfer	in	the	execution	phase.	Then,	the	optimized	execution	plan	is	forwarded	(3)	to	
the	Analytic	Executor.	
	

	
Figure	6:	Logical	Overview	of	the	Distributed	Data	Processing	service	in	the	RAINBOW	ecosystem	

Specifically,	 the	Analytic	 Executor	 is	 responsible	 for	 coordinating	 the	 execution	 of	 the	
queries,	 placing	 the	underlying	 tasks	 to	 the	Analytic	Workers,	 and	observing	 the	non-
blocking	 processing.	 To	 perform	 the	 latter	 tasks,	 the	 Analytics	 Executor	 requests	
information	about	the	underlying	infrastructure	resources,	like	available	CPUs,	memory,	
network	 bandwidth,	 etc.	 from	 the	 Resource	 Manager	 (4),	 part	 of	 the	 RAINBOW	
Orchestration	 Services,	 and	 data	 placement	 metadata	 from	 the	 Storage	 Fabric	 (5).	 It	
should	 be	 mentioned	 that,	 in	 a	 real	 deployment,	 each	 Storage	 Agent	 is	 capable	 of	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 43 of 76

Copyright © Rainbow Consortium Partners 2021

providing	data	locality	information.	So,	in	Figure	6,	the	Storage	Fabric	represents	a	logical	
sub-component	 that	abstracts	and	unifies	 the	 functionality	offered	by	 inter-connected	
local	 Storage	 Agents	 by	 providing	 a	 decentralized	 API	 for	 access	 to	 monitoring	 data.	
Hence,	monitoring	data	are	immediately	made	available	through	the	RAINBOW	secure	
overlay	mesh	network	without	data	needing	to	be	moved	to	a	central	(cloud)	 location	
that	will	provide	data	access	but	with	both	a	performance	penalty	and	costs	incurred	for	
data	movement.	With	information	about	resource	availability	and	storage	metadata,	the	
Analytic	Executor	invokes	the	RAINBOW-enabled	Analytics	Scheduler,	which	performs	an	
analytics	 task	 placement	 algorithm	 to	 provide	 near-to-optimal	 efficiency	 for	 analytic	
queries	based	on	the	user-desired	optimization	polices.	
		
In	the	RAINBOW	execution	layer,	we	have	three	components	that	take	part	in	the	analytic	
processing,	namely,	the	Monitoring	Agents	(6),	Storage	Agents	(7),	and	Analytics	Workers	
(8).	Initially,	a	Monitoring	Agent	generates	streams	of	monitoring	metrics,	continuously	
“pushing”	them	to	the	local	Storage	Agent.	The	generation	of	the	monitoring	streams	does	
not	 fall	within	 the	scope	of	 this	deliverable,	as	 there	are	many	more	details	about	 the	
monitoring	agents	in	the	D3.1.	The	Storage	Agents	store	the	data	in	a	distributed	high-
performance	in-memory	data	structure	with	minimum	retrieval	time	for	the	latest	data.	
Finally,	 the	Analytic	Workers	 retrieve	 the	 stored	 data	 from	 Storage	 Agents,	 via	 direct	
access	to	the	Storage	Fabrics,	process	them,	and	forward	the	results	back	to	the	Analytics	
Executor.	 The	 executor	 disseminates	 results	 to	 the	 Analytics	 Facet	 of	 the	 Analytics	
Perspective	 of	 the	 RAINBOW	 Dashboard	 (9).	 This	 perspective	 is	 a	 component	 that	
retrieves	 the	 computed	 query	 results	 and	 visualizes	 them	 through	 different	 and	
customizable	graphical	representations	of	the	data	(e.g.,	time-series	graphs,	charts,	etc).	
	

4.2.2 Apache Storm

We	have	opted	 for	Apache	Storm	as	our	distributed	stream	processing	 framework	 for	
RAINBOW.	Apache	Storm	is	a	free	and	open-source	system	that	achieves	fast	analysis	of	
data	in	real	time.	Recent	studies	show	that	Storm	can	process	millions	of	data	tuples	per	
second	 per	 participating	 cluster	 node	 [52].	 This	 along	 with	 its	 scalability	 and	 fault-
tolerance	mechanisms	fulfil	the	use	cases’	and	Edge	Computing	paradigm’s	requirements.	
Moreover,	 Apache	 Storm	 can	 be	 used	 with	 multiple	 programming	 languages	 and	
databases,	thus	not	 limiting	the	pool	of	choices	for	the	rest	of	the	RAINBOW	platform.	
Another	important	factor	that	lead	to	the	selection	of	this	specific	framework	is	the	ease	
it	provides	when	there	is	a	need	to	customize	the	assignment	of	analytic	tasks	to	worker	
nodes.	 More	 specifically	 one	 can	 actuate	 a	 custom	 scheduler	 by	 implementing	 the	
IScheduler	interface,	and	without	the	need	to	resort	to	source	code	refactoring.	With	
this	functionality	the	scheduling	decisions	of	the	optimization	algorithms	are	enforced	
into	the	use-cases.	Finally,	it	is	very	easy	to	generate	service	graphs,	create	dependencies	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 44 of 76

Copyright © Rainbow Consortium Partners 2021

as	links,	set	the	stream	grouping	policies	between	services	and	configure	the	parallelism	
of	the	graph	by	means	of	number	of	workers,	threads	and	tasks	per	service,	allowing	the	
RAINBOW	 framework	 to	 further	 capitalize	 on	 optimization	 opportunities.	 More	
information	 on	 the	 scheduling	 algorithms	 and	 user-driven	 optimization	 policies	 are	
presented	in	Section	4.2.4.	
	
In	relevance	to	other	candidate	frameworks,	Hadoop8	 is	one	of	the	oldest	and	popular	
open-source	frameworks	for	distributed	data	processing,	but	it	is	more	tailored	to	batch	
processing	 huge	 volumes	 of	 data	 that	 are	 persistently	 stored	 across	 a	 distributed	 file	
system	(HDFS).	 In	turn,	the	programming	model	of	Hadoop	adopts	a	pure	MapReduce	
approach	and	therefore	it	is	particularly	limited	in	terms	of	query	operators,	while	non-
perfectly	parallelizable	MapReduce	jobs	face	significant	performance	penalties	when	the	
jobs	are	iterative	and	intermediate	data	must	move	back-and-forth	from	the	distributed	
filesystem.		
	
More	suitable	candidate	 frameworks	are	Flink9	 and	Spark,	and	specifically,	one	of	 the	
newest	extensions	of	Spark,	denoted	as	Spark	Streaming10.	Spark	Streaming	adopts	and	
extends	 the	DataFlow	programming	model	of	Spark	and	 therefore	 includes	numerous	
query	abstractions	for	stream	data	processing,	including	data	transformations,	grouping,	
aggregations	and	even	filters.	However,	while	Spark	Streaming	may	seem	like	it	supports	
a	true	stream	processing	paradigm	(due	to	its	naming),	“under	the	hood”	it	is	simply	a	
wrapper	framework	over	Spark	batch	processing	implementing	“micro-batching”.	This	
means	 that	 ingested	 data	 is	 “windowed”	 and	 the	 processing	 logic	 is	 enforced	 on	 the	
window.	 In	 turn,	 introducing	scheduling	algorithms	to	Spark,	and	similarly	 to	Flink,	 is	
particularly	 difficult	 as	 the	 scheduling	 process	 is	 tightly	 coupled	 with	 the	
implementation,	meaning	that	 the	scheduling	must	be	changed	 in	the	Spark	codebase,	
recompiled	and	then	deployed	again	in	order	for	a	change	to	be	supported.	Still,	despite	
its	scheduling	limitations,	Spark	Streaming	as	a	programming	model	can	be	supported	by	
RAINBOW	and	its	query	model,	and	in	Chapter	5	we	make	reference	to	this.	However,	it	
must	 be	 noted	 that	 users	 opting	 for	 this	 will	 not	 be	 able	 to	 make	 use	 of	 any	 of	 the	
RAINBOW-enabled	Schedulers	capable	of	optimizing	IoT	analytic	jobs	over	fog	realms.	
	

4.2.3 Apache Storm in the RAINBOW Analytics Ecosystem

A	Storm	cluster	architecture-wise	is	comprised	of	two	basic	components:	a	Master	node,	
denoted	with	 the	name	Nimbus,	 and	Worker	nodes,	which	are	denoted	as	Supervisors.	
Nimbus,	quite	similar	to	the	JobTracker	in	a	MapReduce	cluster	(e.g.,	Hadoop),	is	the	entity	

	
8	https://hadoop.apache.org/		
9	https://flink.apache.org/		
10	https://spark.apache.org/streaming/		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 45 of 76

Copyright © Rainbow Consortium Partners 2021

responsible	 for	 the	 analytics	 job	 coordination	 that	 includes	 the	 scheduling	of	 analytic	
tasks	to	Supervisors	and	the	overall	overview	of	the	cluster	lifecycle	management	(e.g.,	
handling	 failures).	 In	 turn,	 Supervisors	 are	 the	 nodes	 that	 accept	 analytic	 tasks	 from	
Nimbus	and	coordinate	their	execution	on	the	local	environment	they	have	access	to.	For	
RAINBOW	 this	 environment	 is	 the	 fog	 node	where	 the	 Supervisor	 is	 deployed	 on,	 as	
shown	in	Figure	7.		
	

	
Figure	7:	Storm	in	the	RAINBOW	Ecosystem	

Hence,	the	Supervisors	are	the	actual	implementation	of	the	Analytics	Workers	 that	the	
RAINBOW	Mesh	Stack	features.	In	turn,	Nimbus	is	one	of	the	main	software	components	
comprising	the	Analytics	Executor.	It	is	worth	mentioning	that	a	third	component	is	also	
required	for	the	successful	deployment	of	a	Storm	cluster,	although	not	considered	part	
of	 Storm	 per	 se.	 This	 third	 component	 is	 ZooKeeper11,	 which	 handles	 the	 cluster	
communication	 overlay	 between	 Nimbus	 and	 the	 Supervisor	 nodes	 along	 with	 some	
additional	functionality	including	worker	health	monitoring.		
	
In	Storm,	an	analytics	query	is	described	as	a	Topology,	namely	the	input	data	structure	
received	by	the	Storm	cluster	for	continuous	execution	and	analytics	insight	extraction.	
Note	 that	 an	 analytics	 job	 may	 contain	 multiple	 queries	 and	 therefore,	 multiple	
Topologies.	 In	 its	most	 simplistic	 form,	 a	Topology	 is	 a	Directed	Acyclic	 Graph	 (DAG)	
comprised	of	multiple	nodes	that	can	take	one	of	two	forms.	Specifically,	nodes	can	be	
Spouts	or	Bolts,	as	shown	in	Figure	8.	A	Spout	node	is	linked	to	a	data	source	and	is	in	
charge	of	handling	data	ingestion	by	receiving	data	as	a	stream	of	tuples	and	delegating	

	
11	https://zookeeper.apache.org/		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 46 of 76

Copyright © Rainbow Consortium Partners 2021

these	 tuples	 to	 respective	Bolts,	 based	 on	 the	 configured	Topology.	 Examples	 of	 data	
sources	are	various	DBMSes,	OSNs,	distributed	file-systems	and	even	high-performance	
queueing	services.	In	turn,	Bolts	are	the	nodes	performing	the	actual	data	processing	and	
can	 be	 implemented	 to	 perform	data	 aggregations,	 groupings,	 filtering	 and	 even	 data	
transformations.	It	is	worth	noting	that	a	Bolt	may	consume	data	from	multiple	streams	
and,	 in	 turn,	 generate	 multiple	 streams	 that	 are,	 in	 turn,	 further	 connected	 to	 other	
downstream	Bolts.	
	

	
Figure	8:	Storm	topology	

In	relevance	to	RAINBOW-enabled	IoT	applications,	we	have	designed	and	developed	a	
Spout	node	capable	of	ingesting	streaming	data	from	the	Storage	Fabric	interconnecting	
the	 Storage	 instances	 deployed	 over	 an	 application’s	 fog	 nodes.	 Through	 this	 Spout,	
access	to	the	Storage	Fabric	is	provided	so	that	monitoring	data	relevant	to	the	deployed	
analytic	queries	can	be	accessed.	Specifically,	through	the	Spout,	monitoring	data	can	be	
extracted	in	two	modes:	either	through	a	per	metric	request,	where	a	specific	metric	is	
requested	via	its	metric	id	or	through	a	per	entity	request,	where	all	the	metrics	relevant	
to	a	monitored	entity	are	requested.	In	the	latter	case,	an	entity	can	be	a	fog	node	or	a	
containerized	execution	environment.		
	
In	 turn,	 several	 Bolt	 nodes	 have	 been	 designed	 and	 implemented	 to	 support	 popular	
query	operators	 for	descriptive	statistics,	while	a	number	of	Bolts	 are	currently	being	
designed	to	support	machine	learning	operators	for	classification	and	clustering.	These	
Spout	and	Bolt	nodes	are	open-sourced	and	made	publicly	available	via	the	RAINBOW	
source	code	repository.	While	users	are	free	to	use	them	as	desired	in	implementing	their	
own	custom	analytics	Topologies,	RAINBOW	goes	one	step	beyond	and	can	automatically	
map	 analytic	 queries,	 expressed	 in	 a	 high-level	 declarative	 language	 (described	 in	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 47 of 76

Copyright © Rainbow Consortium Partners 2021

Chapter	5),	to	a	Topology	which	is	then	executed	by	a	Storm	cluster	configured	on	top	of	
an	application’s	overlay	mesh	network	that	interconnects	collaborating	fog	nodes.	

4.2.4 Analytics Job Scheduling in Fog Realms

The	heart	of	the	RAINBOW	project	contribution	to	fog-aware	distributed	data	processing	
is	 in	 scheduling	 analytic	 jobs	 in	 the	 fog	 continuum	 (right	 where	 data	 is	 actually	
generated)	and	to	do	so	while	adhering	to	user-desired	policies	for	job	optimization.	
	
As	 previously	 mentioned,	 in	 Storm,	Nimbus	 uses	 an	 IScheduler	 implementation	 to	
assign	 tasks	 to	 the	 supervisors.	 These	 tasks	 are	 the	Spout	 and	Bolt	 nodes	 of	 a	 Storm	
Topology.	 The	 default	 Storm	 Scheduler,	 dubbed	 as	 fog-agnostic,	 attempts	 to	 allocate	
computing	 resources	 evenly	 to	 topologies.	 It	 works	 well	 in	 terms	 of	 fairness	 among	
topologies,	but	it	is	impossible	for	users	to	predict	the	placement	of	topology	components	
in	the	Storm	cluster,	regarding	which	component	of	a	topology	needs	to	be	assigned	to	
which	supervisor	node.	This	is	a	particular	downside	for	IoT	applications	deployed	in	a	
fog	 environment	 where	 heterogeneity	 is	 the	 “norm”,	 meaning	 that	 both	 fog	 node	
computing	resources,	as	well	as,	network	links	can	(significantly)	differ.		
	
Nonetheless,	 Nimbus	 enables	 users	 to	 design	 and	 deploy	 custom	 schedulers	 by,	 first,	
adopting	and	implementing	the	IScheduler	interface,	and	secondly,	by	assigning	upon	
cluster	 configuration	 the	 relevant	 scheduler	 to	 Nimbus.	 The	 IScheduler	 interface	
contains	two	methods	 for	 implementation.	Specifically,	 the	prepare(Map config)	
method	is	called	upon	once	and	provides	any	initial	configuration	relevant	to	the	custom	
scheduler	 implementation.	 In	 turn,	 the	 schedule(Topologies topologies,
Cluster cluster)	 method	 is	 the	 method	 that	 actually	 performs	 the	 scheduling	
processing	and	therefore,	allocating	analytic	tasks	(segments	of	the	Storm	Topology)	to	
Supervisors.	The	input	to	the	scheduling	process	is	the	topologies/queries	that	must	be	
decomposed	into	segments	and	assigned	to	supervisors,	along	with	the	cluster	object	
capturing	in	a	list	all	the	available	Supervisors	that	can	process	tasks	on	the	cluster.	Note	
that	in	a	static	configuration	of	the	underlying	infrastructure	the	scheduling	process	only	
needs	to	run	once	as	no	changes	are	foreseen	to	the	deployment.	However,	this	is	far	from	
the	 case	 in	 a	 highly	 dynamic	 fog	 continuum	 with	 heterogeneous	 fog	 nodes	 that	 are	
dynamically	(de-)	provisioned.	
	
To	support	RAINBOW-enabled	scheduling	with	the	algorithmic	process	adopting	a	more	
data-oriented	 approach	 so	 that	 the	 decision-making	 process	 is	more	 informative,	 the	
schedule()	 method	 is	 called	 periodically	 and	 the	 input	 given	 under	 the	cluster	
object	is	(currently)	extended	to	include:	(i)	the	IoT	application’s	service	graph,	(ii)	the	
fog	nodes	in	the	current	cluster	along	with	their	current	capabilities;	and	(iii)	up-to-
date	monitoring	data	for	the	fog	nodes	along	with	network	statistics	include	link	quality	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 48 of 76

Copyright © Rainbow Consortium Partners 2021

and	 latency.	 Note	 that,	 as	 shown,	 in	 Table	 7,	 algorithms	 4	 and	 5	 will	 take	 decisions	
relevant	 to	energy	consumption	and	costs.	Hence,	relevant	 fog	node	capabilities	along	
with	monitoring	data	must	also	be	provided	under	the	cluster	object	and	will	be	made	
available	in	the	next	version	of	the	Distributed	Data	Processing	service.		
	
The	goal	of	the	RAINBOW	project	is	to	provide	analytics	jobs	with	optimizations	relevant	
to	fog	computing	settings	based	on	the	user	needs	collected	in	D1.1	and	also	expressed	in	
relevant	scientific	outputs	(e.g.,	research	papers)	[2].	Towards	this,	RAINBOW	will	enable	
Service	Operators	to	select	one	of	the	following	optimization	strategies	upon	deploying	
an	analytics	job	over	the	fog	realm	of	an	IoT	application:	
	
Fog-agnostic	optimization	
This	 policy	 can	 be	 considered	 the	 baseline	 when	 evaluating	 various	 scheduling	
algorithms,	and	essentially,	it	provides	the	default	Storm	Scheduler,	which	adopts	a	fair	
task	allocation	approach.	Going	beyond	the	default,	this	Scheduler	accepts	the	RAINBOW-
enhanced	cluster	object	enriched	with	monitoring	data	from	the	underlying	cluster	so	
that	 the	 scheduling	 process	 can	 be	 performed	 periodically	 to	 acknowledge	 dynamic	
changes	in	the	cluster	due	to	the	(de-)	provisioning	of	resources	from	both	vertical	and	
horizontal	scaling.	
	
Performance-based	optimization	
This	policy	attempts	to	optimize	the	placement	of	tasks	to	worker	nodes	by	considering	
as	 the	 most	 important	 QoS	 metric	 the	 average	 latency	 of	 the	 Storm	 topology.	
Fundamentally,	the	average	latency	can	be	defined	as	the	latency	of	the	slowest	path	in	
the	topology	DAG	with	regards	to	a	single	input	data	batch	and	consists	of	the	average	
communication	latency	between	the	operators	in	the	path.	This	path	is	denoted	as	the	
critical	 path.	 Hence,	 as	 our	 focus	 is	 on	 geo-distributed	 realms,	 the	 dominating	 factor	
contributing	 to	 latency	 is	 the	 communication	 cost	with	 the	 execution	 latency	 of	 each	
operator	 is	 considered	 negligible.	 Towards	 this,	 the	 Scheduler’s	 algorithmic	 process	
attempts	to	solve	a	constraint	satisfaction	algorithm	which	will	optimize	the	placement	
of	tasks	to	worker	nodes	so	that	the	latency	of	the	critical	path	is	minimized	while	still	
ensuring	that	the	compute	capabilities	of	an	operator	can	be	fulfilled	by	the	candidate	fog	
nodes	in	terms	of	CPU	speed	and	RAM.	
	
Optimization	employing	a	trade-off	between	performance	and	data	quality	
This	policy	attempts	to	optimize	the	placement	of	tasks	to	workers	by	considering	data	
quality	as	a	first-class	citizen	and	optimizes	for	both	performance	and	quality.	The	quality	
of	the	data	is	an	important	aspect	in	IoT	scenarios.	Low	quality	can	lead	to	less	useful	
results.	The	quality	of	data	can	be	categorized	into	multiple	dimensions.	Some	examples	
of	these	are	completeness,	timeliness	and	accuracy.	Some	of	the	most	common	factors	that	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 49 of 76

Copyright © Rainbow Consortium Partners 2021

lead	 to	decreased	data	quality	 include	 the	heterogeneity	of	data	 sources,	missing	 and	
dirty	 data	 due	 to	 network	malfunctions	 or	 security	 constraints.	 Therefore,	 this	 policy	
enables	 the	 algorithmic	 process	 of	 the	 Scheduler	 to	 extend	 the	 performance-based	
optimization	so	that	we	can	solve	a	problem	that	trades	latency	for	an	increased	fraction	
of	 incoming	 data,	 for	 which	 data	 quality	 measurements	 are	 performed	 across	
heterogeneous	geo-distributed	devices.	This	problem	is	considered	NP-hard	due	to	the	
fact	 that	 the	 more	 the	 quality	 checks,	 the	 less	 a	 fog	 device	 can	 be	 assigned	 tasks	 of	
upstream	operators,	thus	inducing	higher	communication	cost,	which	contradicts	to	the	
optimization	of	the	latency.	Hence,	in	our	current	research	efforts,	a	Linear	Programming	
optimization	 process	 is	 designed,	 where	 for	 each	 operator	 we	 consider,	 first,	 the	
placement	of	its	parent	nodes	and	then	further	optimize	it	heuristically.	As	this	approach	
may	 fall	 into	 local	 optima	 that	 are	 deemed	 far	 from	 the	 optimal	 solution,	 a	 spring	
relaxation	 algorithm	 introduces	 a	 solution	with	 low	 or	 no	 intra-operator	 parallelism.	
These	 two	 techniques	 are	 not	 seen	 as	 competing	 to	 each	 other.	 After	 running	 both	
techniques,	we	choose	the	best	one.	
	
Optimizations	 employing	 a	 trade-off	 between	 performance	 and	 energy	
consumption	and	introducing	capped	costs	
These	two	optimization	policies	will	be	the	focus	of	our	work	for	the	next	version	of	the	
Distributed	Data	Processing	service.	In	particular,	we	will	design	an	optimization	process	
that	 does	 not	 only	 consider	 the	 communication	 latency	 but	 also	 energy	 consumption	
especially	 when	 a	 set	 of	 fog	 nodes	 are	 battery-powered.	 The	 latter	 is	 particularly	
important	 as	 certain	 nodes	may	 be	 “selectable”	 in	 terms	 of	 compute	 capabilities	 but	
feature	different	power	levels	for	analytic	computations	(e.g.,	Raspberry	Pi	4-8W,	Nvidia	
Jetson	Nano	32-56W).	Hence,	power-hungry	modules	embedded	in	a	battery-powered	
cluster,	can	severely	impact	an	analytic	job	in	the	near	future	as	certain	nodes	may	be	
deemed	 unavailable	 very	 early	 on	 due	 to	 battery	 exhaustion.	 Moreover,	 in	 geo-
distributed	realms,	various	costs	should	be	taken	into	consideration,	spanning	from	the	
compute	cost,	of	using	third-party	fog	nodes	to	network	costs	incurred	due	to	large	data	
transfers.	Hence,	the	user	should	be	able	to	configure	a	cap	in	terms	of	cost	to	the	job	as	
a	trade-off	with	performance	(job	latency).	As	jobs	are	continuous	(streaming)	jobs,	this	
cost	 cap	must	not	be	an	absolute	number	but	 rather	 a	quantity	deemed	 relevant	 in	 a	
certain	(configurable)	timeframe	(e.g.,	minutes,	hours,	day,	etc).		
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 50 of 76

Copyright © Rainbow Consortium Partners 2021

Table	7:	Current	status	of	RAINBOW-enabled	analytics	job	scheduling	algorithms	

Scheduling	Algorithmic	Process	 Algorithm	
Designed	

Algorithm	
Implemented	

Tested	in	
Realistic	
Settings12	

Integrated	
within	

RAINBOW	

Fog-agnostic	(fair	task	allocation)	 X	 X	 X	 X	

Performance-based	(latency)	
optimization	

X	 X	 X	 X	

Employing	a	trade-off	between	
performance	and	data	quality	

X	 X	 X	 	

Employing	a	trade-off	between	
performance	and	energy	consumption		

	 	 	 	

Performance-based	optimization	with	
capped	costs	

	 	 	 	

	
The	 current	 status	 of	 the	 scheduling	 algorithms	 for	 IoT	 analytics	 in	 fog	 computing	
environments,	is	presented	in	Table	7.	We	note	that	algorithms	4	and	5	will	be	part	of	the	
second	 release	 of	 the	 Distributed	 Data	 Processing	 service,	 while	 the	 integration	 of	
algorithm	3	with	RAINBOW	will	be	performed	before	the	first	release	of	the	RAINBOW	
platform	(M18).	
	

4.3 Interaction with other RAINBOW Services and Components

The	 Distributed	 Data	 Processing	 Service	 as	 a	 key	 component	 of	 the	 RAINBOW	 Data	
Management	 Layer,	 interacts	with	 various	 RAINBOW	 components	 of	 the	 platform.	 In	
particular,	the	Distributed	Data	Processing	Service	interacts	with:	
	

• The	Distributed	Data	Storage	and	Sharing	Service:	as	mentioned	in	Chapter	3,	
this	component	interacts	with	the	Distributed	Data	Processing	service	by	serving	
streaming	(monitoring)	data	for	IoT	analytics	computation.	

• The	RAINBOW	Dashboard:	 through	the	Analytics	Perspective,	this	component	
interacts	with	 the	Distributed	Data	Processing	Service	by:	 (i)	enabling	users	 to	
submit	 continuous	 analytic	 jobs	 for	 execution;	 (ii)	 enabling	 users	 to	 define	
optimization	policies	for	improving	certain	KPIs	of	the	execution	of	analytic	jobs	
(e.g.,	 optimize	 performance,	 energy	 consumption);	 and	 (iii)	 providing	 intuitive	
plotting	and	visuals	to	users	for	exploring	the	real-time	insights	extracted	from	
the	analytic	jobs.

	
12	 using	 the	 fogify	 emulator	 (https://ucy-linc-lab.github.io/fogify/)	 to	 deploy	 various	 IoT	 applications	
under	different	scenarios.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 51 of 76

Copyright © Rainbow Consortium Partners 2021

• The	RAINBOW	Orchestrator:	 through	the	SLO	Engine,	 this	service	utilizes	the	
Distributed	Data	Processing	Service	to	submit	analytic	jobs	that	retrieve,	process	
and	 extract	 high-level	 analytic	 insights	 from	 performance	 metrics	 that	 are	
extracted	 from	RAINBOW	Monitoring	after	monitoring	 the	underlying	resource	
utilization	of	the	fog	nodes	an	IoT	application	is	deployed	on.	With	this	data,	the	
SLO	 Engine	 can	 take	 intelligent	 decisions	 about	 the	 deployment’s	 runtime	
behavior	and	if	something	is	deemed	“troubling”,	then	corrective	actions	can	be	
enforced	(e.g.,	auto-scaling).

	

4.4 API and Documentation

Despite	the	fact	that	RAINBOW	users	can	design	and	submit	analytic	queries	and	entire	
jobs	 for	 execution	 via	 the	 Analytics	 Editor	 part	 of	 the	 RAINBOW	 Dashboard,	 the	
Distributed	 Data	 Processing	 Service	 provides	 a	 REST	 API,	 depicted	 in	 Table	 8,	 for	
developers	to	create	applications	that	can	interact	with	the	service	without	the	need	of	
the	intermediate	UI.		
	

Table	8:	Distributed	Data	Processing	Service	REST	API	

Path	 Method	 Parameters	 Description	

/api/insights POST	 Desired	
queries	

With	this	method,	entities	
submit	queries	adopting	the	
declarative	fog	analytics	
query	model.	The	system	
validates	their	syntax	and	
returns	a	deployment-id	for	
the	submitted	analytics	job.	

/api/insights/<deployment-id> PUT	 Amended	
queries	

With	this	method,	entities	
update	submitted	queries	
with	the	id	referring	to	the	

deployment-id.	

/api/insights/<deployment-id> DELETE	 -	 This	method	deletes,	or	
better	un-deploys,	a	

submitted	analytics	job	by	
referring	to	the	job	with	its	

deployment-id.	

/api/insights/<deployment-id> GET	 -	 This	method	returns	the	
current	status	of	an	

analytics	job	along	with	the	
submitted	queries	as	a	
reference	based	on	the	
given	deployment-id.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 52 of 76

Copyright © Rainbow Consortium Partners 2021

	
The	complete	source	code	of	the	Distributed	Data	Processing	service	can	be	found	in	the	
RAINBOW	source	code	repository:	
	

https://gitlab.com/rainbow-project1/rainbow-analytics		
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 53 of 76

Copyright © Rainbow Consortium Partners 2021

5 Fog Analytics Service

In	 this	 Section,	 we	 present	 a	 comprehensive	 documentation	 report	 introducing	 the	
reference	architecture,	exposed	functionality	and	implementation	details	referring	to	the	
Fog	Analytics	Service.	
	

5.1 Requirements and Exposed Functionality

Based	on	the	user	groups	documented	in	D1.1,	the	identified	users	interacting	with	the	
RAINBOW	Fog	Analytics	Service	are	presented	in	Table	9	and	are	the	following:	
	

Table	9:	Fog	Analytics	service	and	interacting	user	groups	

User	Group	 Interaction	with	RAINBOW	Fog	Analytics	Service	

Service	
Operator/Owner	

Interacts	with	the	RAINBOW	Fog	Analytics	Service	by	submitting	
analytic	 jobs	 to	 extract	 insights	 via	 the	 RAINBOW	 high-level	
descriptive	 query	 model,	 and	 afterwards,	 define	 certain	
optimization	 strategies	 for	 the	 to-be	 executed	 analytics	 jobs	
based	on	the	business	aspects	of	the	deployed	IoT	application.	In	
turn,	the	Service	Operator/Owner	can	observe	in	the	extracted	
insights	 through	 intuitive	 plots	 and	 visuals.	 All	 of	 these	
functionalities	 can	 be	 performed	 through	 the	 Analytics	
Perspective	of	the	RAINBOW	Dashboard.	

Service	
Developer	

Interacts	with	the	RAINBOW	Fog	Analytics	Service	by	submitting	
analytic	jobs	to	extract	insights	from	deployed	IoT	applications	
via	the	RAINBOW	high-level	descriptive	query	model.	This	can	
be	performed	either	through	the	he	Analytics	Perspective	of	the	
RAINBOW	 Dashboard	 or	 by	 submitting	 an	 analytic	 job(s)	
directly	 through	 the	 API	 of	 the	 Distributed	 Data	 Processing	
Service.	

RAINBOW	
Developer	

Interacts	 with	 the	 RAINBOW	 Fog	 Analytics	 Service	 by	
developing	 (i)	 ready-to-use	query	operators	 for	 the	high-level	
descriptive	 query	 model,	 (ii)	 new	 compiler(s)	 that	 map	 the	
RAINBOW	 query	 model	 to	 the	 programming	 paradigm	
supported	 by	 underlying	 distributed	 data	 processing	 engines	
(DPE);	 and	 (iii)	 designing	 novel	 algorithms	 optimizing	 the	
mapping	of	 the	RAINBOW	query	model	 to	 the	underlying	DPE	
model	 so	 that	 the	 data	 processing	 pipeline	 is	 optimized	 for	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 54 of 76

Copyright © Rainbow Consortium Partners 2021

certain	 conditions	 (e.g.,	 intermediate	 data	 reduction,	
approximate	answers,	etc).		

5.1.1 Functional Requirements

The	RAINBOW	system	requirements,	documented	in	D1.1	referring	to	the	Fog	Analytics	
Service	are	the	following:	
	
	

Table	10:	System-wide	RAINBOW	function	requirements	relevant	to	Fog	Analytics	

Req.	No.	 Requirement	

FR.22	 Compile	and	Execute	of	analytic	insights	through	a	high-level	and	
descriptive	query	model	

	
To	satisfy	the	system	requirements	documented	in	D1.1	while	also	adhering	to	the	key	
technology	axes	of	 the	Analytics	Engine	presented	 in	D1.2,	 the	 following	 functionality	
must	be	exposed	by	the	Fog	Analytics	Service.		
	
	

ID	 FR.AS.1	

Title	 High-Level	declarative	query	model	for	fog	analytics	

Description	 The	Fog	Analytics	Service	must	provide	RAINBOW	users	with	the	
ability	 to	 design	 analytics	 jobs	 composed	 of	 queries	 extracting	
analytic	 insights	 from	 monitoring	 data	 harvested	 by	 the	
deployment	of	 their	 IoT	applications	over	a	 fog	environment.	To	
achieve	this	a	descriptive	query	model	must	be	provided	with	the	
syntax,	 for	 query	 composition,	 understandable	 even	 from	 non-
expert	 users	 and	 should	 not	 imply	 knowledge	 of	 a	 particular	
programming	model	or	 assume	a	 specific	distributed	processing	
engine.	

Exposed	
Functionality	

Many	user	roles	will	interact	with	the	Fog	infrastructure	through	
the	RAINBOW	Query	Model.	For	instance,	developers	who	would	
like	 to	 evaluate	 the	 performance	 of	 deployed	 services,	 or/and	
service	owners,	who	would	like	to	observe	the	well-functionality	of	
the	 whole	 system.	 Given	 that	 users	 may	 not	 be	 familiar	 with	
distributed	 computations,	 we	 offer	 them	 an	 abstract	 query	
language	 tailored	 for	 Fog	 and	 Edge	 monitoring	 analysis.	
Specifically,	 users	 declare	 their	 desired	 queries	 with	 operations	
like	 Window	 Operators,	 Accumulated	 Operators,	 Compositions,	
and	 Filters	 Predicates.	 Especially,	 Window	 Functions	 are	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 55 of 76

Copyright © Rainbow Consortium Partners 2021

aggregations,	like	sum,	average,	max,	min,	etc.	that	apply	to	values	
that	 fall	 in	 a	 time	 window.	 On	 the	 other	 hand,	 Accumulated	
Functions,	like	running	average,	running	max,	running	min,	EWMA,	
etc.,	generate	the	cumulative	results	from	the	time	that	insight	is	
deployed	up	to	the	"latest"	incoming	data	point.	To	produce	more	
sophisticated	insights,	users	can	apply	Compositions,	which	gives	
users	 the	 opportunity	 to	 combine	 multiple	 windows	 or/and	
accumulated	 operators	 in	 a	 single	 insight.	 Finally,	 Filters	 can	 be	
applied	 on	 any	 stream,	 and,	 obviously,	 discard	 the	 values	 of	 the	
stream	that	do	not	match	the	filter	predicate	criteria.	

	

ID	 FR.AS.2	

Title	 Streaming	analytics	(continuous	queries)	

Description	 The	Fog	Analytics	Service	must	support	streaming	analytic	queries	
that	will	 be	 evaluated	 in	 real-time.	 This	 requirement	 comes	 from	
both	users,	which	would	 like	 to	observe	their	applications	and	be	
aware	of	inefficiencies,	and	the	RAINBOW	scheduler	that	needs	to	
analyze	the	monitored	data	as	soon	as	possible.		

Exposed	
Functionality	

There	 are	 two	 approaches	 in	 streaming	 data	 processing,	 namely,	
continuous	execution,	where	 the	processing	 is	performed	when	a	
new	 datapoint	 comes	 into	 the	 system,	 and	 the	 (micro-)batch	
streaming	 processing,	 where	 the	 system	 splits	 the	 incoming	
datapoints	into	buckets	and	processes	them	in	predefined	intervals	
(e.g.,	every	5	seconds).	The	RAINBOW	query	model	supports	both	
methods	with	the	default	to	be	the	pure-streaming	approach	and	the	
(micro-)	batching	approach	to	be	declared	with	the	EVERY	keyword.	
We	decided	to	provide	both	methods	because	each	one	has	different	
benefits	 in	 Fog	 Infrastructure	 monitoring.	 On	 the	 one	 hand,	 the	
continuous	execution	offers	real-time	responses	but	requires	more	
compute	resources.	On	the	other	hand,	the	micro-batch	processing	
increases	 the	 response’s	 latency,	 by	 adding	 the	 interval	 on	 it,	 but	
occupies	fewer	underlying	resources.	To	this	end,	users	are	able	to	
select	 if	 they	 need	 pure	 real-time	 results,	 by	 sacrificing	 more	
resources,	or	are	tolerant	in	latency	for	better	resource	utilization.				

	

ID	 FR.AS.3	

Title	 Query	model	decoupled	from	the	underlying	processing	
engine	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 56 of 76

Copyright © Rainbow Consortium Partners 2021

Description	 Fog	Computing	is	a	constantly	evolving	environment,	so	RAINBOW	
query	 model	 should	 not	 be	 coupled	 with	 a	 specific	 underlying	
engine.	 Specifically,	 the	model	 should	 be	 easily	 translatable	 into	
different	distributed	engines	with	minimum	effort.	

Exposed	
Functionality	

The	RAINBOW	Query	Model	is	not	designed	as	a	direct	extension	
of	 any	 distributed	 processing	 engine.	 Rather,	 it	 adopts	 abstract	
syntax	trees	as	intermediate	representations	of	the	queries,	so	that	
the	query	model	can	be	optimized	and	compiled	irrespective	of	the	
underlying	distributed	processing	engine.	Towards	this,	users	can	
write	 queries	 and	 analytic	 jobs	 once,	 and	 use	 the	 same	 set	 of	
queries	 anywhere	without	needing	 to	 scratch	 the	 entire	 job	 and	
start	again	when	changing	the	execution	environment.	This	avoids	
in	 a	 sense	 the	 “analytics	 governance	 lock-in”	 and	 enables	
interoperable	query	descriptions.	For	RAINBOW	three	compilers	
will	be	made	available	for	the	aforementioned	query	model.	These	
will	 support	 spark-streaming,	 storm	 and	 the	 rainbow-enabled	
distributed	data	 processing	 service	 utilizing	 storm	but	with	 fog-
aware	scheduling.	

	

ID	 FR.AS.4	

Title	 Optimization	of	generated	analytics	job	execution	plan		

Description	 The	 compilation	 of	 a	 set	 of	 queries	 should	 generate	 a	 highly	
optimized	 executable	 that	 minimizes	 the	 data	 transfer	 and	
computations	in	the	execution	time.			

Exposed	
Functionality	

As	we	mentioned	before,	 the	RAINBOW	stack	 generates	 a	 set	 of	
ASTs	 as	 intermediate	 representations	 of	 the	 queries.	 Taking	
advantage	 of	 the	 ASTs	 formalism,	 Query	 Optimizer	 eventually	
recognizes	similar	statistics	between	queries	and	eliminates	the	re-
calculation	of	them.	Thus,	the	generated	optimized	execution	plan	
minimizes	 the	 re-computation	 between	 different	 tasks	 and,	
consequently,	 generates	 less	 network	 traffic	 and	 computational	
footprint	 to	 the	 underlying	 infrastructure.	 Finally,	 performing	
calculation	 pruning	 before	 the	 compilation	 phase,	 makes	 the	
optimization	process	beneficial	independently	from	the	underlying	
processing	engine.	

	
	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 57 of 76

Copyright © Rainbow Consortium Partners 2021

5.1.2 Non-Functional Requirements

	

ID	 NFR.AS.1	

Title	 Query	Model	Ease	of	Use	and	Expressivity	

Description	 The	use	of	the	RAINBOW	query	model	must	be	(significantly)	simpler	
than	 using	 directly	 the	 underlying	 processing	 engine’s	 programming	
model	and	the	query	model	expressiveness	must	cover	the	majority	of	
the	 operators	 supported	 by	 the	 underlying	 engine	 and	 are	 required	
when	defining	streaming	analytic	queries	for	IoT	services.	

	
	

ID	 NFR.AS.2	

Title	 Model	Extensibility	

Description	 The	RAINBOW	query	model	must	be	extensible	to	support	the	addition	
of	 new	 query	 operators	 and	 the	 addition	 of	 new	 operators	 must	 be	
supported	without	affecting	prior	and	currently	running	queries.	

	
ID	 NFR.AS.3	

Title	 Query	Operator	Encapsulation	

Description	 The	alteration	of	existing	operators	of	the	RAINBOW	query	model,	either	
for	improvement	or	to	fix	certain	issues	(e.g.,	bug),	must	not	affect	prior	
and	currently	running	queries.	

	

5.2 Reference Architecture and Implementation

RAINBOW	 eases	 the	 distributed	 data	 processing	 of	 streaming	 (monitoring)	 data	 by	
providing	 a	 complete	 streaming	 analytic	 stack,	 ranging	 from	 the	query	definition	 and	
optimization	 to	 analytic	 jobs'	 deployment	 and	 visualization	 of	 the	 results.	Figure
9	illustrates	a	high-level	overview	of	the	system's	architecture.		

	We	design	and	implement	the	Fog	Analytics	Service	in	a	way	that	abstracts	and	hides	all	
unnecessary	 information	 from	 the	end-users.	 Specifically,	 a	query	model	 is	 introduced	
with	decoupled	abstractions	from	the	underlying	processing	engines	that	can	express	a	
wide	 range	 of	 analytic	 queries	 and	 optimizations	 related	 to	 the	 processing	 of	 data	
streams	 generated	 across	 fog	 and	 edge	 computing	 realms.	 The	 system	 translates	 the	
queries	into	Abstract	Syntax	Trees	(ASTs)	and	optimizes	the	correlations	between	them.	
Then,	 the	 system	is	 able	 to	translate	 the	 queries	 into	the	 programming	 model	 of	 the	
underlying	processing	engine.	Finally,	an	executable	with	generated	optimized	DAGs	will	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 58 of 76

Copyright © Rainbow Consortium Partners 2021

be	seamlessly	deployed	to	the	processing	engine.	We	should	note	here	that,	a	wide	range	
of	 optimizations	 offered	 by	 the	 model	 can	 be	 performed	 by	 providing	 "hints"	 to	 the	
Analytics	Scheduler	of	the	RAINBOW	Distributed	Data	Processing	Service.	Nonetheless,	
analytic	jobs	output	by	the	Fog	Analytics	Service	can	still	run	on	any	Apache	Storm	and	
Spark	 cluster	 but	 the	 jobs	 will	 function	 without	 the	 user	 of	 any	 RAINBOW-enabled	
optimizations	as	the	baseline	schedulers	of	these	systems	do	not	optimize	analytic	jobs	
for	fog-enabled	IoT	applications.			

Figure	9:	High-Level	Overview	of	the	Fog	Analytics	Cycle	

The	main	components	of	the	RAINBOW	Fog	Analytics	Service	are	the	following:		
	

• Query	 Model:	 Strictly	 speaking,	 the	 query	 model	 is	 not	 an	 actual	 system	
component.	 However,	 the	 query	 model	 is	 the	 abstract	 language,	 used	 by	
RAINBOW	users	to	express	analytic	queries	in	a	high-level	declarative	format.	The	
alternative	 is	 for	 users	 to	 resort	 to	 expressing	 analytic	 jobs	 as	 coded	 query	
operator	 pipelines	 that	 adopt	 programming	 models	 specific	 to	 the	 underlying	
distributed	 data	 processing	 engine	 with	 a	 steep	 learning	 curve	 involved	 and	
significant	cost	for	development,	debugging	and	evolution.	As	our	query	model,	
RAINBOW	adopts	StreamSight13	 (initially	designed	by	UCY)	as	 its	query	model.	
This	is	a	declarative	SQL-like	query	language	supporting	the	extraction	of	analytic	
insights	relevant	to	descriptive	statistics	from	IoT	applications.	The	StreamSight	
query	 model	 has	 been	 significantly	 extended	 and	 its	 expressivity	 along	 with	

	
13	https://github.com/UCY-LINC-LAB/StreamSight		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 59 of 76

Copyright © Rainbow Consortium Partners 2021

various	optimizations	for	fog	environments	are	presented	in	the	following	chapter	
subsections.	

• API:	the	component	responsible	for	managing	and	authorizing	access	to	the	Fog	
Analytics	 Service	 functionalities.	 Users	 submit,	 remove	 or	 update	 the	 analytic	
queries	through	it.		

• Parser:	the	 component	 that	 forms	 the	 queries	 into	 respective	 Abstract	 Syntax	
Trees	 (ASTs).	 Each	AST	expresses	the	language’s	grammar	 rules,	and	the	 final	
level	of	the	tree	are	the	tokens	and	symbols	of	the	query	model.	If	no	valid	AST	can	
be	 constructed	 from	a	 query,	 the	 process	 stops	 and	 returns	 the	 suitable	 error	
message.	 Through	 this	 process,	 Parser	 guarantees	 the	 correctness	 of	 the	
submitted	queries.			

• Optimizer:	is	a	subcomponent	of	the	system	that	takes	as	input	a	set	of	ASTs	and	
provides	 an	 optimized	 abstract	 plan	 to	 the	 Compiler.	 Specifically,	 Optimizer	
extracts	similarities	 between	 the	 queries	 and	 prunes	the	 unnecessary	
computations	 and	 data	 exchanges	 between	the	Fog	 nodes.	 Furthermore,	
Optimizer	enforces	policies	and	restructures	the	order	of	the	operators	to	filter	
out	useless	data	early.		

• Compiler:	takes	as	input	the	optimized	plans	from	the	Optimizer	and	generates	
the	 final	executable	artifact.	To	achieve	 this,	 the	Complier	recursively	traverses	
the	optimized	plans	and	"translates"	each	operator	to	the	underlying	distributed	
engine	code.	The	generated	code	should	be	specific	for	each	underlying	engine,	so	
during	the	translation	process,	Optimizer	invokes	the	selected	streaming	library	
for	the	respected	underlying	distributed	data	processing	engine.			

• Streaming	Libraries:	As	previously	mentioned,	a	streaming	library	supports	the	
Optimizer	by	implementing	a	general	interface	that	materializes	a	set	of	required	
operators	for	the	Compiler	to	be	functional.	The	initial	version	of	StreamSight	only	
supported	 as	 the	 underlying	 programming	 model	 the	 basic	 operators	 for	
descriptive	 statistics	 made	 available	 by	 Spark	 Streaming.	 However,	 RAINBOW	
needs	 much	 more	 comprehensive	 operators,	 like	 pure	 streaming	 execution,	
optimizations	that	need	collaboration	with	the	scheduler	of	the	data	processing	
layer,	fine-grained	sampling	and	anomaly	detection	techniques,	etc.	To	this	end,	
we	introduce	a	new	RAINBOW-enabled	library	implemented	to	support	Apache	
Storm	as	well	that	is	compatible	with	RAINBOW's	data	processing	layer	and	the	
needed	 functional	 requirements.	It	must	 be	 highlighted	 though,	 that	 any	 given	
analytics	 job,	 with	 its	 queries	 expressed	 with	 the	 StreamSight	 model,	 can	 be	
deployed	without	any	changes	to	Spark	Streaming,	Storm	and	RAINBOW-enabled	
Storm	clusters.

	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 60 of 76

Copyright © Rainbow Consortium Partners 2021

5.2.1 Query Model Expressivity

The	RAINBOW	query	model	offers	users	the	ability	to	create	insights,	denoted	as	high-
level	queries	composed	from	raw	low-level	metric	monitoring	streams.	In	a	nutshell,	an	
insight	is	a	new	data	stream	that	comes	from	one	(or	more)	processed	stream(s).	Query	
model	operators	 introduce	aggregations,	 compositions,	 and	 transformations	on	 top	of	
multiple	monitoring	metrics	exposed	by	the	input	stream.		
	

	
Figure	10:	Insight	Abstract	Syntax	

Figure	10	depicts	the	basic	structure	of	an	insight.	The	simplest	insight	structure	includes	
only	 the	insight_name	followed	by	 a	 COMPUTE	statement.	 The	COMPUTE	statement	
requires	a	composite	expression	(e.g.,	an	aggregation	function	on	a	stream).	Furthermore,	
the	 model	 offers	 three	 optional	 primitives,	 namely,	 (i)	WHEN	primitive	 that	 filters	 a	
stream	 by	 applying	 specific	 predicates;	 (ii)	EVERY	primitive	 that	 alternates	 a	 purely	
streaming	execution	to	a	(micro-)batch	query	evaluation;	and	(iii)	the	WITH	statement	
in	 which	 users	 define	 optimizations	 provided	 by	 the	 RAINBOW	 platform,	 such	 as	
sampling,	prioritizing	of	the	results,	constraints	enforcement,	etc.	
	
A	composite	 expression	can	be	 a	 simple	 aggregation,	 e.g.,	 an	 average	over	 a	 stream,	 or	
could	be	recursively	constructed	via	the	left	and	right-hand	composite	expressions.	The	
following	queries	illustrate	some	representative	examples.	For	instance,	the	first	insight	
generates	the	average	energy	consumption	of	the	system	for	the	last	10	minutes,	which	
falls	into	the	simple	aggregation	category,	while	the	second	and	third	insights	compute	
the	energy	cost	for	the	last	ten	minutes	(the	overall	energy	consumption	multiplied	by	
the	cost	of	the	unit	(e.g.,	$)0.002),	and	the	energy	consumption	per	CPU	utilization	unit,	
respectively.	We	 should	 note	 here	 that	 our	model	 includes	many	 arithmetic	 symbols	
(such	as	+,-,*,/)	and	a	set	of	arithmetic	functions	(window-based	or	accumulative).	The	
fourth	insight	generates	the	RAM	utilization	per	fog	node.	Specifically,	when	an	insight	
includes	 the	“BY”	token,	the	query’s	 output	 is	a	 list	 of	 pairs	 (e.g.,	<fog	 node	 id,	
value>)	where	the	second	element	of	each	pair	is	the	result	of	aggregated	values	and	the	
first	element	is	the	distinct	values	of	the	“BY”	attribute.	In	Table	11	and	Table	12	there	
are	all	window-based	and	accumulative	functions	that	are	already	created	and	provided	
from	the	model.	The	window-based	functions	need	a	window	that	denotes	the	past	period	
of	interest	for	aggregating	values,	while	the	accumulated	functions	generate	the	results	
computed	solely	based	on	all	previous	values.		
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 61 of 76

Copyright © Rainbow Consortium Partners 2021

	
	

Table	11:	Window-based	model	operators	

Operator	 Description	

SUM	 The	sum	of	all	values	within	a	window	

COUNT	 The	number	of	values	within	a	window	

MAX	 The	maximum	value	of	the	window	

MIN	 The	minimum	value	of	the	window	

AVG	 The	mean	of	all	values	within	a	window	

TOP-K	 The	top	k	values	from	a	window	
	

Table	12:	Accumulative-based	model	operators	

Operator	 Description	

RUNNING_MEAN	 The	running	average	of	all	values	in	the	stream	

RUNNING_MAX	 The	max	value	of	all	values	

RUNNING_MIN	 The	min	value	of	all	values	

EWMA	 The	exponential	weighted	moving	average	

PEWMA	 The	probabilistic	exponential	weighted	moving	
average	

	
The	WHEN	statement	 represents	 a	 filter	 that	 can	 be	 attached	 to	 a	 stream	 or	
an	expression	 so	 that	 left-hand	 operations	 are	 only	 processed	 if	 the	 filter	 predicate	
evaluates	to	true.	A	WHEN	statement	could	be	either	a	simple	numeric	value	or	even	a	
more	sophisticated	composition	that	follows	RAINBOW's	model.	Users	are	also	capable	
of	 applying	multiple	 filters	 by	 concatenating	 them	 with	 an	AND	logical	 operator.	 The	
following	 queries	 depict	 2	exemplary	insights	including	WHEN	statement.	 Specifically,	
insight	energy_10min_over_100	will	 produce	 results	 only	 if	 the	 average	 energy	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 62 of 76

Copyright © Rainbow Consortium Partners 2021

consumption	 of	 the	 last	 ten	 minutes	 exceeds	 100	 kilowatts.	
The	abnormal_temperature	will	 generate	 results	 only	 if	 the	 average	
environmental	temperature	of	 ten	 minutes	 exceeds	 the	 running	 average	 by	 three	
standard	deviations.		
	

	
	
Since	 some	 engines,	 like	Apache	 Spark,	 do	not	 provide	pure-streaming	 execution	 and	
because	the	processing	of	grouped	data	into	micro-batches	could	be	much	more	efficient,	
RAINBOW's	 query	 language	 includes	the	EVERY	statement.	 The	 EVERY	 construct	
denotes	 the	 interval	 at	 which	 an	 insight	 will	 be	 evaluated.	 Contrary	 to	 that,	 a	 pure	
streaming	insight	will	generate	a	value	for	every	newly	entered	datapoint	into	the	stream	
as	shown	in	the	following	examples:	
	

	
	
Finally,	 the	 optional	WITH	statement	 allows	 users	 to	 define	 certain	 optimization	
strategies	and	constraints	to	improve	runtime	performance	in	the	query	execution.	Users	
can	 define	 multiple	 optimizations	 for	 the	 same	 query	 by	 connecting	 them	 with	
an	AND	statement.	The	 optimizations	 highlighted	 with	 the	 WITH	 statement	 are	
highly	coupled	with	 the	 RAINBOW	 Analytics	 Scheduler	 and	 are	 presented	 in	 the	
following	section.	
	

5.2.2 RAINBOW-Enabled Optimizations

RAINBOW's	model	offers	users	the	ability	to	define	fine-grained	optimizations	that	can	
speed-up	 the	 execution	 or/and	 select	 execution	 policies.	 In	 the	 initial	 version	 of	 the	
system,	we	design	seven	optimizations	 that	users	can	 leverage	 in	 their	queries.	These	
optimizations	 are	Query	 Prioritization,	 Sampling,	 Sampling	 with	 Error	 Margin	 &	
Confidence,	 Adaptive	 Sampling,	 Outlier	 Detection,	 Scheduling	 Algorithm	 Selection,	 and	
Execution	Placement.		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 63 of 76

Copyright © Rainbow Consortium Partners 2021

5.2.2.1 Query Prioritization

Prioritization	allows	users	to	order	their	queries	based	on	their	significance.	For	instance,	
a	 query	 that	 generates	 the	maximum	 environmental	 temperature	 to	 ensure	 the	 fire-
protection	of	the	infrastructure	is	more	critical	than	a	simple	statistic.	RAINBOW's	model	
offers	 users	 the	 keyword	SALIENCE	to	 define	 the	 order	 of	 their	
queries	(higher	SALIENCE	means	 higher	 priority).	 Specifically,	 the	 value	
of	SALIENCE	can	prioritize	the	query	processing	over	other	queries	so	as	when	a	high	
load	 influx	 exists,	 high	 priority	 insights	 are	 not	 delayed.	If	 a	 query	 does	 not	 provide	
the	SALIENCE	primitive,	 the	 system	 considers	 it	 equals	 to	 zero.	 The	 following	
examples	illustrate	the	aforementioned	fire-protection	example,	so	when	the	processing	
engine	 cannot	 process	both	 of	 the	 queries,	 it	 will	 generate	 results	 only	
for	abnormal_temperature.	
	

5.2.2.2 Sampling

Through	sampling,	users	execute	their	insights	on	top	of	a	portion	of	the	incoming	data	
to	get	approximate	but	in-time	results.	The	user	defines	the	sample	size	or	percentage	of	
remaining	 data	 points	as	 the	 parameter	 of	 the	 query.	 RAINBOW	 utilizes	 reservoir	
sampling	as	the	default	sampling	method.	The	core	functionality	of	reservoir	sampling,	
namely	the	probabilistic	selection	of	a	random	fixed-size	sample	from	an	unknown	size	
dataset,	 makes	 it	 one	 of	 the	most	 popular	 streaming	 sampling	 techniques.	In	 case	 of	
percentage	definition	(and	 not	 size	 of	 buffer),	 the	 system	 estimates	 the	 buffer’s	 size	
during	the	execution	and	adjusts	it	properly.		
	

	
5.2.2.3 Sampling with Error Margin & Confidence

Even	 if	 reservoir	 sampling	 is	 a	 popular	 approach	 in	 fog	 analytics,	 it	 has	 a	 certain	
limitation.	 Namely,	 in	 reservoir	 sampling,	 every	 data	 point	 is	 selected	 with	 equal	
probability.	 However,	 if	 various	 and	 heterogeneous	 sources	 produce	 the	 incoming	
stream,	the	latter	may	significantly	change	the	sample's	quality.	To	assure	the	statistical	
quality	 of	 the	 generated	 results,	we	 introduce	 an	 operator	 that	 allows	 sampling	with	
error	confidence.	With	this	operator,	users	are	able	to	define	the	maximum	acceptable	
error	 and	 the	 confidence	 of	 the	 results	 as	 shown	 in	 the	 following	 example.	 We	
implemented	a	combination	of	the	reservoir	and	stratified	sampling	tailored	to	Edge	and	
IoT	 streams,	 namely	 the	 Weighted	 Hierarchical	 Reservoir	 Sampling	 (WHRS)	 as	
introduced	 in	 [53].	 Implementation-wise,	 each	 input	operator	 acts	 independently	 and	
applies	 the	 reservoir	 sampling	 early	 on,	 right	 after	 measurements'	injection.	 The	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 64 of 76

Copyright © Rainbow Consortium Partners 2021

alteration	 of	 the	 traditional	 reservoir	 sampling	 is	 that	 each	 stream	has	 a	 dynamically	
adjustable	reservoir	size	depending	on	its	runtime	statistics.	To	generate	these	statistics,	
a	weighting	mechanism	is	applied,	where	the	significance	of	each	stratified	reservoir	is	
periodically	updated.	To	this	end,	RAINBOW	Analytics	Service	adjusts	the	significance	of	
each	stratified	reservoir	to	comply	with	the	user-defined	boundaries,	as	described	in	the	
definition	of	the	query.		
	

	
5.2.2.4 Adaptive Sampling

Adaptive	sampling	is	a	technique	for	dynamic	adjustment	of	the	sampling	rate	depending	
on	the	context	of	the	streaming	data.	In	this	setting,	the	rate	at	which	data	is	ingested	by	
the	 data	 source	 (e.g.,	 Spout	 in	 Storm)	 dynamically	 changes	 so	 that	 the	 collection	
periodicity	is	not	statically	defined	(e.g.,	in	contrast	to	the	EVERY	construct).	For	instance,	
during	stable	phases	of	a	metric	stream,	the	sampling	rate	is	decreased	to	ease	processing	
and	data	transfer.	This	optimization	inherently	adopts	the	adaptive	sampling	algorithmic	
process	 that	 will	 be	 introduced	 in	 the	 RAINBOW	Monitoring.	 The	 following	 example	
introduces	an	example	of	utilizing	adaptive	sampling	as	an	optimization	to	a	CPU	stream.		
	

	
5.2.2.5 Outlier Detection

There	 are	 many	 implementations	 of	 outliers'	 detection	 in	 streaming	 analytics.	 We	
selected	to	provide	a	set	of	distance-based	outlier	detection	algorithms,	as	we	introduced	
in	[1].	A	distance-based	outlier	detector	considers	as	outliers	all	data	points	that	have	less	
than	K-neighbours	in	a	distance,	denoted	as	R.	In	our	first	implementation,	we	consider	
only	single	dimension	outlier	detection.	That	dimension	 is	 the	current	stream	value	as	
described	 in	 the	 query	 definition	 from	 the	 user.	 Because	 the	 outlier	 detector	 in	 a	
streaming	 setting	 needs	 a	 window	 and	 a	 sliding	 interval,	 we	 created	 a	 new	window	
operator	named	OUTLIER_DETECTOR	that	comes	with	an	extra	WITH	statement	in	which	
the	 user	 selects	 a	 specific	 algorithm	 and	 its	 parameters.	 Next,	we	 demonstrate	 an	
example	of	PMCOD	algorithm	[1]	that	has	as	parameters	a	window	of	ten	minutes,	 five	
seconds	sliding	interval,	takes	into	consideration	fifty	neighbours	in	range	equals	to	0.5.		
	

	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 65 of 76

Copyright © Rainbow Consortium Partners 2021

5.2.2.6 Scheduling Algorithm Selection

The	selection	of	tailored	optimization	based	on	the	scenario	could	be	extremely	beneficial	
for	 the	 end-user	 in	 Fog	 Computing	 analytics.	 Specifically,	 one	 may	 need	 different	
optimization	 strategies	 even	 between	 queries	 that	 are	 submitted	 together.	 As	 we	
described	 in	 Section	 4.2.4,	 the	 RAINBOW	 data	 processing	 layer	 offers	 an	 extensible	
interface	for	implementation	scheduling	algorithms	and	a	set	of	predefined	schedulers.	
To	this	end,	for	the	definition	of	the	selected	algorithm,	RAINBOW's	query	model	offers	
the	 SCHEDULER	 primitive.	 The	 SCHEDULER	 could	 be	 selected	 intendedly	 for	 every	
insight	and	at	low-level	dictates	the	operator's	placement	on	Fog	nodes.	We	should	note	
here	that	the	automated	optimizations,	like	the	reuse	of	intermediate	results,	will	work	
over	queries	that	will	be	handled	by	the	same	scheduler.		
	

	
5.2.2.7 Execution Placement

Last	but	not	least,	through	RAINBOW's	query	model	one	has	the	opportunity	to	specify	a	
subset	 of	 cluster	 nodes	 on	 which	 his/her	 query	 will	 be	 executed.	 Especially,	 the	
PLACEMENT_ON	 statement	 specifies	 a	 set	 of	 parameters	 as	 hints	 to	 the	 RAINBOW's	
scheduler.	The	nodes	metadata	declares	a	set	of	metadata	for	the	nodes	capable	of	hosting	
the	query.	The	latter	metadata	is	known	from	the	RAINBOW	scheduler	and	is	assigned	to	
nodes	from	RAINBOW's	platform.	For	instance,	if	the	data,	needed	from	a	query,	exists	on	
a	specific	region	(region-1),	the	user	can	define	the	"region_name=<region-1>"	metadata	
property	to	place	the	execution	of	the	query	only	on	nodes	existing	in	the	same	region	to	
minimize	the	network	traffic.	Furthermore,	there	are	two	optional	parameters,	namely,	
the	number	of	workers	and	the	DEDICATED	attribute.	The	first	parameter	specifies	how	
many	workers	will	host	the	query	while	if	the	DEDICATED	exists,	the	orchestrator	will	
dedicate	a	set	of	nodes	that	are	allowed	to	run	only	that	query.		
	

	
	

5.2.3 Analytics Job Compilation Process

To	 generate	 our	 model,	 we	use	the	EBNF	standard	 which	 is	 a	 de-facto	 approach	 for	
defining	 new	programming	 languages	 and	query	models.	 The	 initial	EBNF	description	
can	be	found	in	the	deliverable	appendix.	Furthermore,	we	utilize	the	ANTLR	parser14	in	
order	 to	 automatically	 produce	 the	 grammar	 and	 token	 classes.	After	 that,	 we	

	
14	https://www.antlr.org/		

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 66 of 76

Copyright © Rainbow Consortium Partners 2021

materialized	 and	 connected	 that	 classes	with	the	Parser	component	 to	 be	 compatible	
with	the	rest	of	the	system.	
	
During	the	submission	of	the	queries,	the	Parser	builds	an	Abstract	Syntax	Tree	(AST)	
for	each	submitted	query	that	follows	the	syntactic	and	grammatic	rules	of	the	RAINBOW	
query	model	(EBNF	description).	Figure 11	 depicts	 the	 AST	 representation	 of	 the	 first	
exemplary	query.	In	a	nutshell,	the	leaves	of	the	tree	are	the	tokens	and	symbols	of	the	
query	 model	 while	 the	 tree	 structure	 obeys	 the	 grammar	 rules.	 Thus,	 an	 insight	 is	
syntactically	valid	if	the	system	can	generate	the	AST	of	the	insight	without	any	syntax	
error.	
	
	

	
Figure	11:	Exemplary	Abstract	Syntax	Tree	

	
Given	an	AST	(or	a	set	of	ASTs),	the	Compiler	is	capable	of	translating	them	into	low-level	
code	of	the	underlying	engine.	Specifically,	 the	Compiler	recursively	traverses	the	AST	
and	automatically	maps	the	grammar	rules	and	tokens	into	streaming	operators	of	the	
deployed	 engine.	However,	 the	 programming	 models	 of	 different	 distributed	 engines	
may	 vary.	For	 instance,	 Spark	 Streaming	 offers	 pipeline	 operators	 (e.g.,	map,	 reduce,	
filter)	while	 Apache	 Storm	uses	 purely	 user-defined	 graphs	(DAGs).	 Furthermore,	 the	
engine	 itself	may	have	 specific	 limitations,	 e.g.,	 Spark	Streaming	does	not	 evaluate	 its	
operators	continuously	but	splits	the	stream	into	micro-batches.	Last	but	not	least,	there	
is	 no	 compatibility	 between	 different	 engines'	 source	 codes.	In	 order	 to	display	 the	
difficulty	of	distributed	engine's	code	writing,	Figure	12	depicts	a	query	written	in	the	
RAINBOW	query	model	 and	written	 by	 following	Apache	 Storm	programming	model,	
respectively.		
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 67 of 76

Copyright © Rainbow Consortium Partners 2021

	
	

	
Figure	12:	Exemplary	query	adopting	the	RAINBOW	query	model	vs	the	native	Storm	programming	model	

The	same	example	needs	over	15	lines	of	code	in	Apache	Spark,	completely	different	from	
Apache	 Storm.	To	alleviate	this	 heterogeneity,	and	of	 course	minimize	 the	 query’s	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 68 of 76

Copyright © Rainbow Consortium Partners 2021

definition	 effort,	 RAINBOW	 Analytic	 Service	 introduced	 an	 abstract	 interface	 that	
includes	the	definition	of	the	minimum	required	methods	for	Compiler	to	be	capable	of	
model-to-code	 translation.	 The	 current	 version	 of	 the	 system	 includes	 two	 Streaming	
Libraries	 namely,	 an	 old	 proof-of-concept	 implementation	 of	 the	 Spark	 Streaming	
library	that	 includes	only	 the	bare	minimum	 functionality,	 and	a	newly	 created,	more	
comprehensive	 and	 complete	 implementation	 on	 Apache	 Storm	 that	 includes	 all	
RAINBOW-enabled	functionalities	and	is	the	default	streaming	library	of	the	RAINBOW	
platform.	
	
So,	the	compiler	produces	and	joins	data	streams	recursively	until	insight	is	built	as	an	
executable	job.	However,	a	naive	translation	of	queries	to	underlying	engine	code	could	
increase	the	processing	delay,	given	that	users	submit	multiple	and	related	queries,	and	
the	 processing	 engines,	 like	 Apache	 Storm	 or	 Spark,	 evaluate	them	separately	 as	
independent	 processes.	 For	 instance,	 the	 following	 examples	illustrates	 two	 insights	
namely,	the	average	energy	consumption	of	the	last	ten	minutes	and	the	average	energy	
consumption	increased	by	100.			
	

With	 the	 before-mentioned	 strategy,	 even	 if	 both	 streams	 feature	 the	same	10min	
arithmetic	 mean	 from	 the	 same	 input	 stream,	 both	 pipelines	 must	be	recomputed.	
Reasonably,	 the	re-computation	of	 the	 same	 sub-query	 incurs	 a	 huge	 communication	
penalty,	 if	 the	generated	tasks	are	placed	on	different	machines,	but	also	computation	
overhead	even	if	the	tasks	are	collocated.	The	latter	bottlenecks	are	significant	for	the	Fog	
computing	realms,	where	the	processing	power	is	restricted,	or	even	occurs	extra	energy	
consumption,	and	the	network	bandwidth	is	valuable.	To	address	this,	our	optimization	
process	identifies	identical	queries	or	part	of	queries	(same	aggregation,	input	stream,	
interval,	 and	 optimization)	 between	 the	 submitted	 insights	 and	 combines	 them	 to	
generate	 an	 optimized	 execution	plan.	 Figure 13	 visualizes	the	 ASTs	 of	the	
aforementioned	 example.	Understanding	 that	 the	 two	 insights	 have	 an	
identical	aggregation,	the	optimizer	will	merge	them	to	minimize	the	re-computation	of	
the	second’s	insights	sub-tree	(namely	the	red	part	of	the	tree).	That	optimized	plan	gives	
to	 the	 distributed	 engine	 the	 hidden	 semantic	 knowledge	 that	 is	missing	 in	 low-level	
operations.	With	that	optimized	plan,	the	underlying	engine	will	"cache"	the	results	and	
speed	up	the	overall	execution.	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 69 of 76

Copyright © Rainbow Consortium Partners 2021

	
Figure	13:	Queries	reusing	intermediate	results	to	reduce	unnecessary	data	computations	

	

5.3 Interaction with other RAINBOW Services and Components

The	RAINBOW	Fog	Analytics	Service	is	“run”	through	the	RAINBOW	Dashboard	and	“sits”	
on	top	of	the	Distributed	Data	Processing	Service	with	the	goal	of	easing	the	definition	
and	compilation	of	analytics	jobs	for	users.	To	avoid	repetition,	we	will	omit	referring	to	
the	 interacting	services,	which	are	 the	RAINBOW	Dashboard	and	the	Distributed	Data	
Processing	Engine,	both	described	in	Section	4.3.	
	

5.4 API and Documentation

As	 previously	 mentioned,	 the	 RAINBOW	 Fog	 Analytics	 Service	 “sits”	 on	 top	 of	 the	
Distributed	Data	Processing	Service	and	therefore	“shares”	the	API	referenced	in	Table	8.	
In	 turn,	 the	 complete	 source	 code	 of	 the	 Fog	 Analytics	 Service	 can	 be	 found	 in	 the	
RAINBOW	source	code	repository:	
	

https://gitlab.com/rainbow-project1/rainbow-analytics		
	
	
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 70 of 76

Copyright © Rainbow Consortium Partners 2021

6 Conclusion

In	this	deliverable,	we	presented	all	necessary	information	regarding	the	implementation	
aspects	 of	 the	 RAINBOW	ecosystem	Data	Management	 Services	 along	with	 the	major	
decisions	about	the	realization	technologies	and	tools.	The	Data	Management	Services	
contain	three	loosely	coupled	sub-components,	namely,	the	Distributed	Data	Storage	and	
Sharing	Service,	the	Distributed	Data	Processing	Service,	and	the	Fog	Analytics	Service.				
	
Initially	 we	 introduce	 a	 thorough	 report	 of	 the	 challenges	 that	 are	 related	 to	 data	
management	 when	 applied	 to	 Fog	 Computing	 infrastructure(s).	 Towards	 this,	 we	
extensively	 examined	 the	 current	 state-of-the-art	 technologies	 and	 the	 most	 recent	
advances	in	key	technology	axes.	Having	a	clear	overview	of	the	state-of-the-art	and	the	
challenges	of	the	topic,	we	proceed	with	the	identification	of	the	fine-grained	functional	
and	non-functional	requirements	for	each	component.	The	requirements	led	us	to	select	
specific	tools,	design	the	architecture,	and	introduce	solutions	tailored	to	the	RAINBOW	
users’	needs.			
	
We	 chose	 Apache	 Ignite	 as	 the	 main	 realization	 technology	 for	 the	 Distributed	 Data	
Storage	 and	 Sharing	 Service	 since	 it	 can	 be	 seen	 as	 both	 persistent	 and	 in-memory	
distributed	 data	 storage.	 An	 extensive	 feature-	 and	 experimental-wise	 comparison	
among	 similar	 state-of-the-art	 systems	 indicated	 that	 Ignite	 behaves	 much	 more	
effectively	 in	 Fog	 Computing	 environments.	 Most	 importantly,	 Ignite	 allows	 us	 to	
implement	data	rebalancing	algorithms	without	the	need	for	re-engineering	the	whole	
system	but	only	configuring	thin	clients	on	top	of	it.	Finally,	high-performance	indexing	
schemas	have	been	introduced	to	speed	up	the	retrieval	of	particular	information	(latest	
data,	historical	data,	and	metadata)	across	the	fog	continuum.			
	
The	 Distributed	 Data	 Processing	 service	 enables	 geo-distributed	 data	 processing	 by	
utilizing	 an	 open-source,	 scalable,	 and	 extensible	 distributed	 engine,	 namely	 Apache	
Storm,	as	the	RAINBOW	data	processing	engine.	The	main	contribution	of	RAINBOW	in	
the	distributed	processing	is	a	handful	of	novel	Fog-aware	scheduling	algorithms	that	will	
be	implemented	and	be	available	by	the	end	of	the	project.	The	early	version	of	the	system	
provides	a	baseline	and	a	latency-optimized	scheduling	algorithm	along	with	other	three	
schedulers	which	are	still	 in	progress.	Schedulers	consider	various	aspects	during	 the	
scheduling	process	such	as	data	quality,	energy	consumption,	and	cost.			
	
The	 Fog	 Analytics	 Service	 is	 the	 last	 component	 that	 is	 introduced	 by	 the	 current	
deliverable,	and	its	role	is	to	ease	the	definition	of	complex	streaming	analytic	queries.	
To	achieve	that,	Fog	Analytic	Service	provides	a	high-level	and	declarative	query	model	
that	abstracts	 the	description	of	analytics	 from	real-time	monitoring	data.	Despite	 the	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 71 of 76

Copyright © Rainbow Consortium Partners 2021

fact	that	the	model	is	decoupled	from	the	underlying	engine,	it	promotes	the	declaration	
of	fog-aware	optimizations	that	RAINBOW	schedulers	can	apply.		
	
Finally,	we	provided	extensive	documentation	on	how	every	sub-component	 interacts	
with	each	other	as	well	as	with	the	other	RAINBOW	components.	
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 72 of 76

Copyright © Rainbow Consortium Partners 2021

7 References

[1]	 T.	 Toliopoulos,	 C.	 Bellas,	 A.	 Gounaris,	 and	 A.	 Papadopoulos,	 “PROUD:	 PaRallel	
OUtlier	 Detection	 for	 Streams,”	 in	 Proceedings	 of	 the	 2020	 ACM	 SIGMOD	
International	Conference	on	Management	of	Data,	2020,	pp.	2717–2720.	

[2]	 M.	Symeonides,	Z.	Georgiou,	D.	Trihinas,	G.	Pallis,	and	M.	D.	Dikaiakos,	“Fogify:	A	
Fog	 Computing	 Emulation	 Framework,”	 in	 2020	 IEEE/ACM	 Symposium	 on	 Edge	
Computing	(SEC),	2020,	pp.	42–54.	

[3]	 M.	 Symeonides,	 Z.	 Georgiou,	 D.	 Trihinas,	 G.	 Pallis,	 and	M.	 D.	 Dikaiakos,	 “Demo:	
Emulating	Geo-Distributed	Fog	Services,”	 in	2020	IEEE/ACM	Symposium	on	Edge	
Computing	(SEC),	2020,	pp.	187–189.	

[4]	 Z.	Georgiou,	C.	Georgiou,	G.	Pallis,	E.	M.	Schiller,	and	D.	Trihinas,	“A	Self-stabilizing	
Control	 Plane	 for	 Fog	 Ecosystems,”	 in	 2020	 IEEE/ACM	 13th	 International	
Conference	on	Utility	and	Cloud	Computing	(UCC),	2020,	pp.	13–22.	

[5]	 A.-V.	 Michailidou,	 A.	 Gounaris,	 M.	 Symeonides,	 and	 D.	 Trihinas,	 “[Under-
Submission]	 EQUALITY:	 Quality-Aware	 Intensive	 Analytics	 on	 the	 Edge,”	 IEEE	
Trans.	Big	Data,	2021.	

[6]	 R.	 Taft	 et	 al.,	 “CockroachDB:	 The	 Resilient	 Geo-Distributed	 {SQL}	 Database,”	 in	
Proceedings	 of	 the	 2020	 International	 Conference	 on	 Management	 of	 Data,	
{SIGMOD}	Conference	2020,	online	conference	[Portland,	OR,	USA],	June	14-19,	2020,	
2020,	pp.	1493–1509.	

[7]	 M.	 Serafini,	 E.	 Mansour,	 A.	 Aboulnaga,	 K.	 Salem,	 T.	 Rafiq,	 and	 U.	 F.	 Minhas,	
“Accordion:	 Elastic	 Scalability	 for	 Database	 Systems	 Supporting	 Distributed	
Transactions,”	Proc.	{VLDB}	Endow.,	vol.	7,	no.	12,	pp.	1035–1046,	2014.	

[8]	 Couchbase,	“https://www.couchbase.com/.”	.	
[9]	 A.	 Lakshman	 and	 P.	 Malik,	 “Cassandra:	 A	 Decentralized	 Structured	 Storage	

System,”	SIGOPS	Oper.	Syst.	Rev.,	vol.	44,	no.	2,	pp.	35–40,	Apr.	2010.	
[10]	 “Amazon	Aurora.”		https://aws.amazon.com/rds/aurora/.	
[11]	 “ArangoDB.”	https://www.arangodb.com/	.	
[12]	 “Apache	CouchDB.”	https://couchdb.apache.org/	.	
[13]	 “PostgreSQL.”		https://www.postgresql.org/.	
[14]	 “Redis.”		https://redis.io/.	
[15]	 “Riak.”	https://riak.com/	.	
[16]	 “Apache	Cassandra.”	https://cassandra.apache.org/	.	
[17]	 “Apache	HBase.”	https://hbase.apache.org/	.	
[18]	 “Apache	Ignite.”	https://ignite.apache.org/.	
[19]	 A.	Adya	et	al.,	“Slicer:	Auto-Sharding	for	Datacenter	Applications,”	in	12th	{USENIX}	

Symposium	 on	 Operating	 Systems	 Design	 and	 Implementation,	 {OSDI}	 2016,	
Savannah,	GA,	USA,	November	2-4,	2016,	2016,	pp.	739–753.	

[20]	 M.	Serafini,	R.	Taft,	A.	J.	Elmore,	A.	Pavlo,	A.	Aboulnaga,	and	M.	Stonebraker,	“Clay:	
Fine-Grained	Adaptive	Partitioning	for	General	Database	Schemas,”	Proc.	{VLDB}	
Endow.,	vol.	10,	no.	4,	pp.	445–456,	2016.	

[21]	 R.	Taft	et	al.,	“E-Store:	Fine-Grained	Elastic	Partitioning	for	Distributed	Transaction	
Processing,”	Proc.	{VLDB}	Endow.,	vol.	8,	no.	3,	pp.	245–256,	2014.	

[22]	 “VoltDB.”	https://www.voltdb.com/.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 73 of 76

Copyright © Rainbow Consortium Partners 2021

[23]	 “Hazelcast	IMDG.”	https://hazelcast.org/	.	
[24]	 “Amazon	DynamoDB.”	https://aws.amazon.com/dynamodb/	.	
[25]	 “MongoDB.”	https://www.mongodb.com/	
[26]	 “FaunaDB.”	.	
[27]	 H.	Herodotou,	F.	Dong,	and	S.	Babu,	“No	one	(cluster)	size	fits	all,”	Proc.	2nd	ACM	

Symp.	Cloud	Comput.	-	SOCC	’11,	pp.	1–14,	2011.	
[28]	 Apache	Spark,	“\url{http://spark.apache.org/}.”	2017.	
[29]	 Flink,	“Flink.”	2018.	
[30]	 “Apache	Storm.”	.	
[31]	 J.	 Dean	 and	 S.	 Ghemawat,	 “MapReduce:	 Simplified	 Data	 Processing	 on	 Large	

Clusters,”	Commun.	ACM,	vol.	51,	no.	1,	pp.	107–113,	Jan.	2008.	
[32]	 K.	Kloudas,	M.	Mamede,	N.	Preguiça,	 and	R.	Rodrigues,	 “Pixida:	Optimizing	Data	

Parallel	Jobs	in	Wide-area	Data	Analytics,”	Proc.	VLDB	Endow.,	vol.	9,	no.	2,	pp.	72–
83,	Oct.	2015.	

[33]	 D.	 Trihinas,	 G.	 Pallis,	 and	 M.	 D.	 Dikaiakos,	 “Low-Cost	 Adaptive	 Monitoring	
Techniques	for	the	Internet	of	Things,”	IEEE	Trans.	Serv.	Comput.,	2017.	

[34]	 M.	D.	D.	Moysis	Symeonides,	Demetris	Trihinas,	Zacharias	Georgiou,	George	Pallis,	
“Query-Driven	Descriptive	Analytics	for	IoT	and	Edge	Computing,”	IEEE	Int.	Conf.	
Cloud	Eng.	(IEEE	IC2E)	2019,	2019.	

[35]	 J.	Ren,	H.	Guo,	C.	Xu,	and	Y.	Zhang,	“Serving	at	the	Edge:	A	Scalable	IoT	Architecture	
Based	on	Transparent	Computing,”	IEEE	Netw.,	vol.	31,	no.	5,	pp.	96–105,	2017.	

[36]	 A.	Gupta,	R.	Harrison,	M.	Canini,	N.	Feamster,	J.	Rexford,	and	W.	Willinger,	“Sonata:	
Query-Driven	 Streaming	 Network	 Telemetry,”	 in	 Proceedings	 of	 SIGCOMM’18,	
2018.	

[37]	 Q.	 Pu	 et	 al.,	 “Low	 Latency	 Geo-distributed	 Data	 Analytics,”	 SIGCOMM	 Comput.	
Commun.	Rev.,	vol.	45,	no.	4,	pp.	421–434,	Aug.	2015.	

[38]	 C.-C.	Hung,	G.	Ananthanarayanan,	L.	Golubchik,	M.	Yu,	and	M.	Zhang,	“Wide-Area	
Analytics	 with	 Multiple	 Resources,”	 in	 Proceedings	 of	 the	 Thirteenth	 EuroSys	
Conference,	2018.	

[39]	 Z.	 Hu,	 B.	 Li,	 and	 J.	 Luo,	 “Flutter:	 Scheduling	 tasks	 closer	 to	 data	 across	 geo-
distributed	 datacenters,”	 in	 IEEE	 INFOCOM	 2016	 -	 The	 35th	 Annual	 IEEE	
International	Conference	on	Computer	Communications,	2016,	pp.	1–9.	

[40]	 A.	 Vulimiri	 et	 al.,	 “WANalytics:	 Geo-Distributed	 Analytics	 for	 a	 Data	 Intensive	
World,”	 in	 Proceedings	 of	 the	 2015	 ACM	 SIGMOD	 International	 Conference	 on	
Management	of	Data,	2015,	pp.	1087–1092.	

[41]	 K.	 Hsieh	 et	 al.,	 “Gaia:	 Geo-Distributed	 Machine	 Learning	 Approaching	 {LAN}	
Speeds,”	 in	 14th	 {USENIX}	 Symposium	 on	 Networked	 Systems	 Design	 and	
Implementation	({NSDI}	17),	2017,	pp.	629–647.	

[42]	 J.	Xu,	Z.	Chen,	J.	Tang,	and	S.	Su,	“T-storm:	Traffic-aware	online	scheduling	in	storm,”	
in	 2014	 IEEE	 34th	 International	 Conference	 on	 Distributed	 Computing	 Systems,	
2014,	pp.	535–544.	

[43]	 B.	Peng,	M.	Hosseini,	Z.	Hong,	R.	Farivar,	and	R.	Campbell,	 “R-Storm,”	Proc.	16th	
Annu.	Middlew.	Conf.,	Nov.	2015.	

[44]	 L.	Eskandari,	J.	Mair,	Z.	Huang,	and	D.	Eyers,	“T3-Scheduler:	A	topology	and	Traffic	
aware	 two-level	 Scheduler	 for	 stream	 processing	 systems	 in	 a	 heterogeneous	
cluster,”	Futur.	Gener.	Comput.	Syst.,	vol.	89,	pp.	617–632,	2018.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 74 of 76

Copyright © Rainbow Consortium Partners 2021

[45]	 X.	 Fu,	T.	Ghaffar,	 J.	 C.	Davis,	 and	D.	Lee,	 “EdgeWise:	A	Better	 Stream	Processing	
Engine	 for	 the	 Edge,”	 in	2019	 {USENIX}	 Annual	 Technical	 Conference	 ({USENIX}	
{ATC}	19),	2019,	pp.	929–946.	

[46]	 “Trident.”	.	
[47]	 M.	Armbrust	et	al.,	“Spark	SQL:	Relational	Data	Processing	in	Spark,”	in	Proceedings	

of	the	2015	ACM	SIGMOD	International	Conference	on	Management	of	Data,	2015,	
pp.	1383–1394.	

[48]	 M.	 Armbrust	 et	 al.,	 “Structured	 Streaming:	 A	 Declarative	 API	 for	 Real-Time	
Applications	in	Apache	Spark,”	in	Proceedings	of	the	2018	International	Conference	
on	Management	of	Data,	2018,	pp.	601–613.	

[49]	 Apache,	“Edgent.”	2019.	
[50]	 Z.	Georgiou,	M.	Symeonides,	D.	Trihinas,	G.	Pallis,	and	M.	Dikaiakos,	“StreamSight:	

A	 Query-Driven	 Framework	 for	 Streaming	 Analytics	 in	 Edge	 Computing,”	 in	
Proceedings	of	 the	11th	 International	Conference	on	Utility	and	Cloud	Computing	
(UCC	2018),	2018.	

[51]	 B.	F.	Cooper,	A.	Silberstein,	E.	Tam,	R.	Ramakrishnan,	and	R.	Sears,	“Benchmarking	
cloud	 serving	 systems	with	 YCSB,”	 in	Proceedings	 of	 the	 1st	 ACM	 symposium	on	
Cloud	computing,	2010,	pp.	143–154.	

[52]	 P.	Raj,	“Chapter	Seven	-	The	Hadoop	Ecosystem	Technologies	and	Tools,”	in	A	Deep	
Dive	into	NoSQL	Databases:	The	Use	Cases	and	Applications,	vol.	109,	P.	Raj	and	G.	C.	
Deka,	Eds.	Elsevier,	2018,	pp.	279–320.	

[53]	 Z.	 Wen,	 D.	 Quoc,	 P.	 Bhatotia,	 R.	 Chen,	 and	 M.	 Lee,	 “ApproxIoT:	 Approximate	
Analytics	 for	 Edge	 Computing,”	 in	 38th	 IEEE	 International	 Conference	 on	
Distributed	Computing	Systems	(ICDCS	2018),	2018.	

	
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 75 of 76

Copyright © Rainbow Consortium Partners 2021

Appendix

EBNF Descriptive Query Model

	

	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D4.1	–	Data	Management	Services	–	Early	Release	
	 Date:	31.03.2021	
	 Dissemination	Level:	PU	

	

Page 76 of 76

Copyright © Rainbow Consortium Partners 2021

	

