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Executive Summary 

The	purpose	of	Deliverable	D4.2	is	to	provide	a	thorough	report	on	the	final	release	of	the	
RAINBOW	 Data	 Management	 Services	 which	 are	 designed	 and	 developed	 within	 the	
scope	 of	 Work	 Package	 4	 (WP4).	 The	 services	 designed	 within	 WP4,	 enhance	 the	
RAINBOW	ecosystem	with	 intelligent	data	management	services,	 such	as	data	storage	
and	sharing	mechanisms	(T4.1),	which	can	be	deployed	alongside	the	fog	continuum	so	
that	analytic	insights	are	extracted	from	fog	services	via	geo-distributed	data	processing	
(T4.2)	with	the	use	of	high-level	analytic	query	abstractions	(T4.3).			
	
This	deliverable	provides	a	comprehensive	overview	of	the	purpose	and	functionality	of	
each	 RAINBOW	 service	 involved,	 presenting	 architectural	 decisions	 and	 functional	
design	 that	 has	 been	 developed/improved	 since	 the	 early	 release	 of	 the	 services	 and	
documented	in	D4.1.	Notable	new	features	include	(i)	the	Storage	Fabric	designed	and	
implemented	on	top	of	the	overlay	mesh	network	interconnecting	through	the	fog	node	
local	storage	agents	to	provide	decentralized	coordination	for	the	querying	of	monitoring	
data	 (T4.1);	 (ii)	 the	 design	 and	 implementation	 of	 fog-aware	 analytics	 job	 scheduling	
algorithms	that	enable	users	to	denote	various	optimization	strategies	and	exploit	trade-
offs	between	optimization	criteria	(T4.2);	and	(iii)	the	implementation	of	the	streaming	
analytics	query	model	packaged	as	an	analytics	job	compiler	that	can	be	used	on	different	
distributed	data	processing	backends	(T4.3).		
	
The	 deliverable	 then	 proceeds	 with	 a	 report	 on	 the	 validation	 and	 fulfilment	 of	 the	
requirements	 set	 in	 D1.1	 and	 extended	 in	 depth	 in	 D4.1	 to	 expand	 the	 requirements	
mapped	 to	 WP4.	 Finally,	 this	 deliverable	 concludes	 by	 providing	 in	 the	 form	 of	 an	
Appendix	 the	 documentation	 made	 available	 at	 the	 deliverable	 release	 for	 the	 three	
services	developed	within	WP4.		 	
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1 Introduction 

Deliverable	 4.2,	 henceforth	 simply	 referred	 to	 as	 D4.2,	 provides	 a	 comprehensive	
overview	 and	 documentation	 report	 for	 the	 final	 version	 of	 the	 RAINBOW	 Data	
Management	Services	 that	 are	developed	within	 the	 scope	of	Work	Package	4	 (WP4).	
These	services	are	integral	for	the	broad	vision	of	RAINBOW	as	they	contribute	to	various	
key	features	that	the	RAINBOW	ecosystem	has	to	offer	to	IoT	application	developers	and	
operators	during	the	deployment	and	execution	of	their	applications.		
	
Specifically,	 the	 Distributed	 Data	 Storage	 and	 Sharing	 service,	 contributes	 to	
providing	persistent	storage	of	monitoring	data	on	the	fog	nodes	themselves.	This	is	a	
vital	 feature	 as	 data	 collected	 in	 the	 fog	 continuum	 does	 not	 move	 for	 storage	 and	
processing	which	in	the	end,	may	compromise	data	privacy	and	will	have	an	imminent	
effect	 in	the	performance	of	analytic	computations	that	must	be	completed	in	time	for	
mission-critical	services	(i.e.,	vehicle	traffic	control).	To	achieve	this,	the	Distributed	Data	
Storage	and	Sharing	service	features	a	high-performance	indexing	scheme	that	enabled	
the	querying	of	any	fog	node	of	the	topology	for	data	(data	location	transparent	to	user).	
Towards	 this,	we	have	given	 the	 service	 the	name	 “Storage	Fabric”.	Key	 features	 that	
contribute	to	its	ability	to	retrieve	data	with	low-latency	(stable	algorithmic	complexity),	
replicate	data	across	multiple	nodes,	and	partition	data	schemas	for	high-availability,	will	
be	introduced	in	Chapter	3.	
	
The	next	key	service	of	the	RAINBOW	Data	Management	layer	is	the	RAINBOW	Analytics	
Stack	 which	 is	 responsible	 for	 providing	 low-latency	 data	 processing	 across	 geo-
distributed	 realms.	 This	 service	 is	 developed	 on	 top	 of	 the	 popular	 and	 open-source	
Apache	Storm	framework	streaming	big	data	analytics.		
	
There	are	three	key	novelties	developed	along	with	the	RAINBOW	Analytics	Stack.	The	
first	 entails	 the	design	of	novel	 analytic	 job	Schedulers	 that	 extend	 the	 capabilities	of	
Storm	 to	 optimize	 streaming	 jobs	 by	 acknowledging	 the	 limitations	 that	 fog	
environments	 feature.	 These	 are	 the	 dynamicity	 of	 the	 environment	 itself	 (fog	 nodes	
added/removed),	 resource	heterogeneity,	network	uncertainty,	 fog	nodes	 that	end	up	
with	 low	 data	 quality	 and	 fog	 nodes	 that	 are	 battery	 powered.	 Towards	 this,	 several	
Schedulers	have	been	designed	as	part	of	the	Distributed	Data	Processing	service	with	
the	intend	for	users	to	simply	specify	through	the	RAINBOW	Dashboard	what	should	be	
optimized	 without	 having	 to	 code	 the	 “how”,	 leaving	 this	 burden	 to	 the	 RAINBOW-
enabled	Schedulers.		
	
The	 second	 novelty	 entails	 the	 design	 of	 a	 high-level	 and	 declarative	 query	 model,	
packaged	under	the	Fog	Analytics	service	that	supports	the	abstraction	of	analytics	from	
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real-time	monitoring	data	 to	 ease	 the	description	 and	programmability	 of	 continuous	
analytic	jobs.	This	query	model	is	completely	decoupled	from	the	underlying	distributed	
processing	 engine	 to	 promote	 the	 reuse	 of	 analytics	 jobs.	 In	 turn,	 the	 compilation	 of	
analytic	jobs	provides	some	initial	optimizations	that	attempt	to	reduce	the	unnecessary	
computation	(and	distribution	over	the	network)	of	intermediate	query	results	that	are	
a	significant	overhead	in	geo-distributed	environments.	
	
The	third	novelty	involves	the	testing	the	analytics	stack	of	data-intensive	IoT	services.	
This	is	achieved	through	the	design	of	an	emulation	framework	that	enables	the	rapid	
provisioning	 of	 emulated	 testbeds	 to	 evaluate	 “what-if”	 scenarios	 in	 consolidated	
environments	so	that	KPIs	can	be	assessed	under	extreme	conditions,	including	network	
uncertainty,	 entity	 mobility,	 load	 fluctuations,	 node	 failures	 and	 connectivity	
degradation.	
	

1.1 Document Purpose and Scope 

The	 purpose	 of	 this	 deliverable	 is	 to	 provide	 a	 comprehensive	 overview	 and	
documentation	 report	 of	 the	 second	 -and	 final-	 release	 of	 the	 RAINBOW	 Data	
Management	Services	which	contribute	to	providing	interoperable	analytic	capabilities	
to	 fog-enabled	 deployments	 via	 intelligent	 data	 storage	 and	 processing	 mechanisms	
capable	of	operating	in	the	fog	continuum	and	on	top	of	trusted	overlay	mesh	networks.	
In	respect	to	this,	D4.2	aims	to	derive	a	clear	overview	of	the	final	implementation	and	
feature	validation	of	the	three	components	comprising	the	RAINBOW	Data	Management	
Services	and	are	developed	under	the	umbrella	of	WP4,	namely:	(i)	the	Distributed	Data	
Storage	and	Sharing	Service;	(ii)	the	Distributed	Data	Processing	Service;	and	(iii)	the	Fog	
Analytics	Service.	To	this	end,	D4.2	documents	for	each	component	of	the	RAINBOW	Data	
Management	layer	their	new	functionalities	and	improvements	since	the	early	release	of	
these	services	along	with	their	documentation.	In	addition,	D4.2	provides	a	requirements	
fulfilment	report	of	the	functional	requirements	of	each	component.		
	
Finally,	 we	 note	 that	 D4.2	 is	 partially	 based	 on	 a	 number	 of	 scientific	 papers,	 which	
introduce	 core	 concepts	 of	 the	 components	 that	 are	 part	 of	 the	 RAINBOW	 Data	
Management	Services	and	WP4.	These	papers,	are	highlighted	below:	
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Table	1:	Scientific	Papers	Published	within	WP4	Scope	

WP4	Scientific	Papers		 RAINBOW	
Partners	

Data	 Placement	 in	 Dynamic	 Fog	 Ecosystems.	 T.	 Toliopoulos,	 A-V	
Michailidou,	A.	Gounaris,	IEEE	International	Workshop	on	
Self-Managing	Database	Systems	(SMDB),	May	2022	

AUTH	

[Under	 submission]	 Explainable	 Distance-based	 Outlier	 Detection	 in	
Data	Streams,	T.	Toliopoulos,	A.	Gounaris,	VLDB	2022	

AUTH	

BenchPilot:	Repeatable	&	Reproducible	Benchmarking	 for	Edge	Micro-
DCs.	J.	Georgiou,	M.	Symeonides,	M.	Kasioulis,	D.	Trihinas,	G.	Pallis	and	M.	D.	
Dikaiakos.	 2022	 IEEE	 Symposium	 on	 Computers	 and	 Communications	
(ISCC),	June	2022.	

UCY	

Demo:	 Emulating	 5G-Ready	 Mobile	 IoT	 Services.	 M.	 Symeonides,	 D.	
Trihinas,	 G.	 Pallis	 and	 M.	 D.	 Dikaiakos.	 In	 2022	 ACM/IEEE	 International	
Conference	 on	 Internet-of-Things	 Design	 and	 Implementation	 (IoTDI	
'22),	May	2022	

UCY	

5G-Slicer:	 An	 emulator	 for	 mobile	 IoT	 applications	 deployed	 over	 5G	
network	 slices.	M.	 Symeonides,	 D.	 Trihinas,	 G.	 Pallis	 and	M.	 D.	 Dikaiakos,	
Constantinos	Psomas	and	Ioannis	Krikidis.	In	2022	ACM/IEEE	Conference	on	
Internet-of-Things	Design	and	Implementation	(IoTDI	'22),	May	2022	

UCY	

PROUD:	PaRallel	OUtlier	Detection	for	Streams.	T.	Toliopoulos,	C.	Bellas,	A.	
Gounaris,	and	A.	Papadopoulos.	In	Proceedings	of	the	2020	ACM	SIGMOD	
International	 Conference	 on	 Management	 of	 Data	 (SIGMOD	 '20).	
Association	for	Computing	Machinery,	New	York,	NY,	USA,	2717–2720.	

AUTH	

Fogify:	 A	 Fog	 Computing	 Emulation	 Framework.	 M.	 Symeonides,	 Z.	
Georgiou,	 D.	 Trihinas,	 G.	 Pallis	 and	 M.	 D.	 Dikaiakos,	 2020	 IEEE/ACM	
Symposium	on	Edge	Computing	(SEC),	San	Jose,	CA,	USA,	2020,	pp.	42-54.	

UCY	

[Best	 Demo	 Award]	 Emulating	 Geo-Distributed	 Fog	 Services.	 M.	
Symeonides,	 Z.	 Georgiou,	 D.	 Trihinas,	 G.	 Pallis	 and	 M.	 D.	 Dikaiakos,	 2020	
IEEE/ACM	Symposium	on	Edge	Computing	(SEC),	San	Jose,	CA,	USA,	2020,	
pp.	187-189.	

UCY	

A	 Self-stabilizing	 Control	 Plane	 for	 Fog	 Ecosystems.	 Z.	 Georgiou,	 C.	
Georgiou,	G.	Pallis,	E.	M.	Schiller,	 and	D.	Trihinas,	 In	2020	 IEEE/ACM	13th	
International	Conference	on	Utility	and	Cloud	Computing	(UCC),	pp.	13-
22,	December	2020.	

UCY	
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1.1 Document Relationship with other Deliverables and Work Packages 

This	deliverable	is	built	on	the	foundation	of	D4.1	that	provided	an	initial	report	on	the	
design	 and	 implementation	 of	 the	 RAINBOW	 Data	 Management	 Services,	 while	 also	
highlighting	 the	 requirements	 that	 must	 be	 satisfied	 to	 overcome	 the	 challenges	
introduced	when	deploying	data	storage	and	analytics	services	in	the	fog	continuum.	The	
requirements	list	is	a	by-product	of	the	initial	requirement	mapping	introduced	in	D1.1.	
To	this	end,	D4.2	provides	a	report	on	the	requirement	validation	and	accomplishment,	
while	also	serving	as	detailed	documentation	on	the	design,	implementation,	and	release	
of	the	final	features	of	the	RAINBOW	Data	Management	Services	based	on	the	updated	
RAINBOW	architecture	as	introduced	in	D5.3.	
	

1.2 Document Structure 

The	rest	of	this	deliverable	is	structured	as	follows:	Chapter	2	provides	an	updated	state-
of-the-art	analysis	in	respect	to	the	key	technology	axes	relevant	to	the	contributions	of	
WP4.	Chapter	3	presents	the	final	version	of	the	RAINBOW	Distributed	Data	Storage	and	
Sharing	service.	In	turn,	Chapter	4	presents	the	final	version	of	the	RAINBOW	Distributed	
Data	Processing	service,	while	Chapter	5	presents	the	RAINBOW	Fog	Analytics	Service,	
which	capitalizes	on	the	Distributed	Data	Processing	Service	to	provide	a	high-level	query	
language	for	fast	submission	of	optimized	streaming	analytic	jobs	for	fog	deployments.	
Finally,	Chapter	6	concludes	this	deliverable	and	outlines	future	directions.	
	

1.3 Interim Review Comments 

D4.2	is	structured	in	a	way	that	it	takes	into	account	all	reviewer	comments	in	relevance	
to	the	overall	project	and	specifically	to	WP4.	Towards	this,	D4.2	features:	

- An	updated	state-of-the-art	in	relevance	to	the	novel	aspects	proposed	in	WP4.	In	
addition	to	this,	a	clear	description	is	provided	in	Chapter	2	(SOTA)	of	what	is	the	
“RAINBOW	Approach”	in	terms	of	advancing	the	SOTA.	

- A	more	 technical	 approach	 has	 been	 followed	 in	 the	way	 each	WP4	 service	 is	
presented	in	terms	of	its	architecture	and	place	in	the	RAINBOW	ecosystem.	This	
has	been	done	without	repeating	content	from	the	DoA	and	with	the	least	amount	
of	content	overlap	with	D4.1.	

- All	RAINBOW	requirements	from	D1.1	that	have	been	mapped	to	WP4	services	
(D4.1)	have	been	assessed	and	are	all	successfully	achieved.	

- The	Fogify	emulator	for	data-intensive	IoT	applications	that	has	been	presented	
during	the	interim	review	but	was	not	described	in	D4.1,	 is	documented	in	this	
deliverable.	
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2 State of the Art and Key Technology Axes Challenges 

In	 this	Section,	we	will	update	 the	State-of-the-Art	presented	 in	D4.1.	Particularly,	we	
present	 SOTA	 work	 in	 the	 respective	 areas	 with	 focus	 on	 the	 new	 functionality	 and	
algorithms	 that	 are	 introduced	 in	 D4.2	 highlighting	 the	 key	 differences	 of	 the	
contributions	made	by	the	services	developed	within	the	scope	of	RAINBOW	WP4.	
	

2.1 Geo-Distributed Data Storage and Sharing 

Edge	computing	frameworks,	like	RAINBOW,	are	highly	distributed	as	hundreds	or	even	
thousands	of	devices	that	are	placed	at	multiple	locations.	These	devices	need	to	access	
persistently	 stored	 data,	 modify	 and	 save	 them	 to	 a	 database.	 Moreover,	 real-time	
analysis	 on-the-fly	 is	 crucial	 when	 dealing	 with	 Edge	 Computing	 applications	 and	
streaming	 data,	 for	 example	 the	 analysis	 of	 sensor	 data.	 When	 choosing	 a	 Database	
Management	System	for	such	scenario,	new	challenges	arise	compared	to	a	centralized	
solution. 
 
Scalability,	is	crucial	in	Edge	Computing	as	we	deal	with	tens	or	hundreds	of	devices,	as	
mentioned	previously.	High	scalability	also	increases	the	elasticity	of	the	DBMS	and	the	
ability	to	handle	workload	changes.	Scalability	in	such	scenarios	is	horizontal	by	means	
of	adding	more	devices	when	demand	for	resources	arises	[1]	[2].	Couchbase	1	provides	
multi-dimensional	scaling	 that	scales	queries,	 indexes	and	data,	supporting	more	 than	
one	hardware	profile,	resulting	in	isolation	of	services.	 
 
The	reliability	and	fault-tolerance	of	a	distributed	DBMS	is	often	achieved	through	data	
replication,	i.e.,	copies	of	data	that	are	stored	in	multiple	devices	[1]	[3].	The	master-slave	
model	is	used	in	multiple	DBMSs,	whereas	multiple	replication	types	like	transactional,	
snapshot	 or	 merge	 and	 schemas	 like	 full	 or	 partial	 exist.	 Multi-master	 replication	 is	
preferable	when	dealing	with	multiple	devices.	Amazon	Aurora	2,	ArangoDB	3,	CouchDB	
4,	 PostgreSQL	 5	 and	 Redis	 6	 provide	 this	 feature.	 The	 Multi-master	 paradigm	 also	
increases	the	availability	and	response	time	of	the	DBMS.	Also,	distributed	DBMSs	must	
handle	 more	 aspects	 regarding	 concurrency	 and	 recovery,	 when	 compared	 to	 a	
centralized	 DBMS.	 More	 specifically,	 data	 consistency	 is	 trickier	 due	 to	 the	 multiple	

	
1	https://www.couchbase.com	
2	https://aws.amazon.com/rds/aurora	
3	https://www.arangodb.com	
4	https://couchdb.apache.org	
5	https://www.postgresql.org	
6	https://redis.io	
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copies	of	data	and	distributed	commits.	Riak	7	tackles	this	by	allowing	conflicting	copies	
of	data	to	exist	at	the	same	time	while	guaranteeing	eventual	consistency. 
 
Moreover,	DBMSs	should	also	take	into	account	the	failure	of	links	and	devices.	Apache	
Cassandra	8		features	no	single	point	of	failure.	A	Write	Ahead	Log	9	10	is	also	used	to	keep	
logs	of	transactions	in	case	of	device	failure. 
 
In	 order	 to	 optimize	 the	 use	 of	 multiple	 edge	 devices	 and	 reduce	 bottlenecks,	 i.e.,	
overloading	of	certain	devices,	 load	balancing	algorithms	must	be	a	part	of	 the	DBMS.	
This	can	be	achieved	by	dynamically	altering	the	placement	of	data	to	devices	in	order	to	
off-load	them.	Slicer	[4]	is	a	service	that	partitions	data	using	keys	while	monitoring	the	
load	of	each	key	and	making	 rebalancing	moves.	Accordion	 [2]	keeps	a	 load	balanced	
state	 through	scaling	(adding	or	removing	devices)	and	predicts	bottlenecks	based	on	
transaction	 affinity.	 Other	 works	 [5],	 [6]	 achieve	 fine-grained	 partitioning	 of	 data	 by	
detecting	and	carefully	placing	the	“hot”	tuples.	 
 
The	nature	of	data	RAINBOW	deals	with	is	related	to	streaming,	while	multiple	data	are	
produced	 per	 second.	 Their	 fast	 analysis	 and	 real-time	 response	 are	 crucial	 in	 Edge	
Computing	scenarios.	Saving	and	accessing	data	 through	 the	disk	would	cause	a	 large	
non-acceptable	 overhead,	 thus	 the	 use	 of	 in-memory	 databases	 for	 analysis	 and	
distribution	is	the	way	forward.	VoltDB	11	is	a	main	memory	DBMS	based	on	H-Store12,	
providing	elastic	scalability,	rapid	failover	and	consistent	low	latency,	while	performing	
single	thread	distributed	transactions.		Redis	6	is	an	open-source,	fast	main-memory	data	
structure	store.	Redis	can	eliminate	delays	in	data	retrieval	achieving	very	fast	response	
times	with	read	and	write	operations	taking	less	than	a	millisecond,	while	it	also	provides	
high	 availability,	 scalability,	 fast	 fault	 recovery,	 built-in	 replication	 and	 on-disk	
persistence.	 Hazelcast	 IMDG	 13	 is	 an	 open-source	 in-memory	 data	 grid.	 The	 main	
advantage	of	using	data	grids	is	speed,	especially	when	dealing	with	vast	streaming	data.	
Data	 are	 evenly	 distributed	 to	 the	 cluster	 nodes	 providing	 horizontal	 scaling.	 Apache	
Ignite	10	is	an	open-source,	distributed	store	designed	to	work	with	big	data	and	clusters	
of	 nodes.	 The	 form	 in	 which	 data	 is	 being	 stored	 is	 in	 key-value	 pairs	 which	 can	 be	
replicated	or	partitioned	across	the	nodes	of	the	cluster,	achieving	scalability	and	fault-
tolerance.	 Ignite	 also	 supports	 co-located	 processing	 enabling	 the	 analysis	 of	 data	 on	
nodes	and	achieving	lower	data	transferring	across	the	network	making	it	suitable	for	

	
7	https://riak.com	
8	https://cassandra.apache.org	
9	https://hbase.apache.org	
10	https://ignite.apache.org	
11	https://www.voltdb.com	
12	https://hstore.cs.brown.edu/		
13	https://hazelcast.com/products/imdg	
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data-intensive	 or	 compute-intensive	 analytics	 like	 RAINBOW	 use	 cases.	 However,	 as	
explained	in	the	next	section,	the	built-in	replication	and	partitioning	mechanisms	need	
to	be	by-passed	 in	 the	context	of	WP4,	since	 Ignite,	 like	all	 the	other	afore-mentioned	
systems,	has	been	designed	for	data-center	rather	than	fog	environments.	
 
Finally,	 a	 distributed	 DBMS	 needs	 to	 take	 additional	 security	 measures	 due	 to	 the	
extensive	 number	 of	 users	 and	 devices	 that	 access	 the	 data.	 The	 security	 should	 be	
considered	both	in	the	communication,	that	is	at	the	exchanging	of	data	as	well	as	in	data	
by	means	of	authentication	and	encryption.	The	first	part	can	be	achieved	through	SSL	
and	TLS	protocols	and	the	use	of	VPN	while	the	second	through	digital	certificates.	What	
DBMSs	can	provide	to	security	is	the	encryption	of	data	upon	storing	them	using	keys		14	
as	well	as	authentication	and	access	control	mechanisms	15	16.	In	RAINBOW	data	storage	
solutions,	we	capitalize	on	the	work	in	WP2	so	that	all	physical	geo-distributed	instances	
of	a	single	logical	database	operate	in	a	trusted	manner.	
	
The	RAINBOW	Approach.	As	already	mentioned,	RAINBOW	leverages	an	established	
data	center-oriented	solution,	such	as	Ignite,	and	develops	lightweight	components	to	by-
pass	the	built-in	replication	and	partitioning	components,	so	that	the	final	data	storage	
solution	is	suitable	for	heterogeneous	distributed	fog	settings.	Any	access	to	the	data	and	
nodes	is	fully	protected	due	to	the	provisions	in	WP2.	
	

2.2 Geo-Distributed Data Placement	

An	important	aspect	when	trying	to	optimize	analytics	in	a	geo-distributed	environment,	
like	the	RAINBOW	project’s	use	cases,	is	the	placement	of	data.	A	query’s	latency	can	be	
highly	affected	by	the	location	of	its	input	data	and	their	replication	mainly	due	to	low	
bandwidths	or	even	privacy	and	security	reasons.	Thus,	it	is	crucial	to	carefully	consider	
where	 to	 place	 input	 data	 and	 to	 decide	 whether	 to	 move	 them	 or	 not,	 through	
replication,	in	order	to	overcome	any	overheads	that	may	occur	during	the	execution	of	
the	query.		
	
To	 deal	with	 these	 challenges	RAINBOW	 incorporates	 a	 query-driven	 data	 placement	
technique	to	minimize	data	transferring.	More	specifically,	the	location	of	input	data	and	
their	replicas	as	well	as	the	placement	of	the	analytical	tasks,	which	essentially	are	the	
bolts	of	a	Storm	topology,	are	carefully	considered	when	deciding	the	placement	of	the	
source	vertices;	the	spouts	in	a	Storm	terminology.	Moreover,	data	freshness	reduction	

	
14	https://aws.amazon.com/dynamodb	
15	https://www.mongodb.com	
16	https://fauna.com	
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resulting	from	replicated	data	and	data	quality	degradation	in	exchange	for	lower	latency,	
is	also	considered.	
	
Many	works	have	dealt	with	the	data-placement	problem	but	none	of	them	achieves	the	
novelty	of	RAINBOW	mentioned	above.	One	of	the	most	prominent	solutions	is	Iridium	
[7],	 which	 optimizes	 the	 query	 response	 time	 by	 moving	 input	 data	 away	 from	 the	
bottleneck	nodes.	The	size	of	the	replicated	data	is	calculated	by	finding	the	amount	of	
data	that	will	incur	the	minimum	data	transfer	overhead.	The	problem	is	cast	as	an	ILP	
optimization	 but,	 no	 freshness	 and	 quality	 criteria	 are	 considered.	 In	 addition,	 the	
RAINBOW	framework	deals	with	streaming	data,	while	the	solution	in	[7]	targets	batch	
queries. 
	
Yugong	 [8]	 is	 a	 system	 that	manages	 data	 and	 job	 placement	 in	 geo-distributed	 data	
centers	 and	 aims	 to	 minimize	 bandwidth	 usage.	 Data	 placement	 is	 altered	 through	
migration	 and	 replication	 of	 data	 during	 runtime.	 More	 specifically,	 when	 there	 is	 a	
change	in	the	workloads	or	the	bandwidth	usage	exceeds	a	threshold,	a	data	migration	
plan	is	decided	using	an	optimization	solver.	Moreover,	the	replication	of	data	is	updated	
at	 specific	 intervals	 using	 a	 greedy	 algorithm.	As	 in	 Iridium,	no	 freshness	 and	quality	
criteria	are	considered.	Samya	[9]	is	another	advanced	geo-distributed	data	management	
system,	 but	 its	 focus	 is	 on	 supporting	 transactions	 rather	 than	 performing	 data	
placement.		
	
Additionally,	 AdaptDB	 [10]	 partitions	 datasets	 across	 a	 cluster	 and	 refines	 these	
partitions	as	distributed	join	operations	are	executed.	Partitioning	trees	are	utilized,	and	
the	goal	 is	 to	migrate	data	blocks	between	 these	 trees	 to	ensure	 load	balancing.	Also,	
Sword	[11]	 introduces	a	workload-aware	data	placement	and	replication	solution	that	
minimizes	the	query	makespan.	In	both	of	these	works,	no	geo-distribution	and	resource	
heterogeneity	aspects	are	considered.	
	
Finally,	 in	all	of	the	above	cases,	the	stability	of	the	nodes,	which	is	 important	in	a	fog	
ecosystem	like	RAINBOW,	is	not	considered.	
	
The	 RAINBOW	 Approach.	 RAINBOW	 addresses	 the	 problem	 of	 data	 placement	 in	
distributed	 databases	 in	 fog	 environments	 through	 replicating	 data	 closer	 to	
computation,	while	considering	the	impact	on	data	freshness	and	quality	that	any	data	
placement	 decision	 may	 have.	 This	 approach	 complements	 the	 common	 rationale	 to	
move	 computations	 closer	 to	data	 and	helps	 in	meeting	 real-time	 latency	 constraints.	
RAINBOW	proposes	two	novel	techniques	to	decide	when	and	where	to	replicate	local	
data	from	a	storage	instance	to	a	remote	one	to	cope	with	the	fog	ecosystem's	challenges.	
The	first	technique	takes	into	account	the	stability	of	the	fog	cluster's	nodes	and	tries	to	
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replicate	data	from	unstable	instances	to	stable	ones,	in	order	to	eliminate	data	loss	due	
to	 node	 failures/disconnections.	 The	 second	 technique	 is	 query-driven;	 based	 on	 the	
periodic	 queries	 and	 the	 placement	 of	 the	 processing	 vertices,	 a	 multi-objective	
optimization	problem	is	solved,	 to	place	data	on	nodes	and	reduce	 latency	taking	 into	
account	freshness	and	data	quality	degradation	issues.	
	

2.3 Scheduling Streaming Analytic Jobs in the Fog Continuum 

Scheduling	 analytic	 jobs	 is	 an	 optimization	 problem	with	 the	 indent	 to	 derive	 a	 clear	
mapping	 between	 the	 tasks	 of	 the	 analytics	 job	 and	 the	 workers	 of	 the	 underlying	
analytics	 engine	 so	 that	 resources	 and	QoS	 requirements	 are	meet	 before	 and	during	
execution	[2].	Recently,	a	paradigm	shift	is	being	observed,	where	data	harvested	from	
IoT	 devices	 is	 not	 “shipped”	 to	 central	 cloud	 datacenters	 for	 processing	 due	 to	 the	
requirements	 for	 milli-second	 responses	 that	 mission	 critical	 applications	 require,	
including	the	use-cases	of	the	RAINBOW	project	(human-robot	collision	avoidance,	car	
navigation	assistance	and	autonomous	drone	swarm	coordination)	[3].	Hence,	it	makes	
no	sense	to	place	IoT	services	at	the	network	extremes,	while	leaving	the	data	processing	
to	the	cloud	datacenter.		
	
As	such,	RAINBOW	embraces	-in	place-	data	processing	where	analytic	jobs	are	scheduled	
and	executed	in	the	fog	continuum	shared	among	the	collaborating	fog	nodes	allocated	to	
the	IoT	service	to	reduce	any	potential	overheads	of	disseminating	data	back-and-forth	
to	the	cloud.	In	this	sense,	fog	data	processing	presents	similarities	with	geo-distributed	
data	processing	but	moves	away	 from	batch	processing	over	reliable	networks	where	
network	 delays	 are	 negligible	 [4]–[6].	 Specifically,	 fog	 data	 processing	 deals	 almost	
exclusively	with	streaming	data,	while	the	fog	nodes	present	a	high	degree	of	resource	
and	 network	 heterogeneity,	 can	 be	 mobile	 and	 extremely	 ephemeral,	 with	 all	 these	
contradicting	the	operating	requirements	of	distributed	data	processing	frameworks	that	
are	optimized	for	homogeneous	machine	clusters	found	in	the	cloud	[7].	
	
As	the	SOTA	landscape	in	geo-distributed	processing	is	large,	diverse	and	with	various	
aspects	already	covered	in	D4.1,	this	section	puts	particular	focus	on	schedulers	designed	
for	optimizing	distributed	 streaming	processing	over	Apache	Storm	and	how	 the	 task	
scheduling	grasps	on	various	requirements	for	edge	and	fog	computing.	At	this	point	we	
note	 that	 the	 default	 Storm	 Scheduler	 adopts	 a	 pseudo-random	 round-robin	 task	
placement	strategy	to	the	worker	nodes	without	even	exploiting	data	locality	[8].	This	
default	 scheduling	 algorithm	 is	 simplistic	 and	 not	 optimal	 in	 terms	 of	 throughput.	
Specifically,	not	acknowledging	resource	heterogeneity	of	 the	worker	nodes	results	 in	
some	of	 the	nodes	being	extremely	 strained	and	over-utilized	while	other	nodes	with	
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resource	availability	not	being	efficiently	utilized.	Hence,	the	scheduling	ends	up	being	
problematic	and	far	from	optimal.		
	
To	 tackle	 resource	 heterogeneity,	 one	 of	 the	 prominent	 requirements	 for	 edge	
computing,	the	R-Storm	Scheduler	[9]	employs	a	resource-aware	optimization	for	Storm	
jobs	 by	 solving	 a	 quadratic	 multi-dimensional	 Knapsack	 Problem	 in	 an	 attempt	 to	
optimize	job	throughput	through	task	placement	when	acknowledging	the	heterogeneity	
of	worker	nodes	in	terms	of	compute	and	memory	resources.	On	the	other	hand,	the	T3-
Scheduler	for	Storm	[10]	puts	focus	on	placing	the	job’s	tasks	that	communicate	with	each	
other	 on	 nodes	 that	 are	 closer	 in	 terms	 of	 network	 distance.	 In	 turn,	 the	 T-Storm	
Scheduler	[11]	supports	the	application	of	query	operators	over	streaming	settings	by	
considering	 the	 inter-node	 and	 inter-process	 traffic	 to	 assign	workload	 to	 the	 nodes,	
rather	than	the	default	approach	adopted	by	the	Storm	engine.	Also,	T-Storm	does	not	
require	the	use	of	all	worker	nodes	on	the	cluster	and	some	may	end	up	not	being	used	
at	all.	Similarly,	the	TS-Storm	Scheduler	[12]	attempts	to	solve	the	inter-node	imbalance	
problem	by	adopting	a	constraint-based	optimization	algorithm	to	dynamically	eliminate	
the	performance	bottleneck	of	the	topology.		
	
While	all	aforementioned	techniques	constitute	interesting	approaches,	they	present	key	
limitations.	 In	particular,	both	resource	and	network	capacity	are	assumed	to	be	fixed	
and	thus,	agnostic	to	the	actual	workload.	This	introduces	an	obvious	downside,	as	the	
workload	in	an	edge/fog	realm	does	not	remain	unchanged	during	the	whole	lifecycle	of	
the	streaming	IoT	application	and	therefore,	performing	the	scheduling	only	once	during	
the	 application	 deployment	 is	 unrealistic.	 A	 scheduler	 that	 performs	 runtime	
optimization	is	D-Storm	[13],	which	employs	a	greedy	algorithm	in	the	form	of	a	variant	
bin	packing	process	that	is	periodically	executed	to	acknowledge	the	dynamicity	of	the	
changes	in	the	underlying	environment	and	minimize	inter-node	communication	latency.	
In	 turn,	 another	 key	 limitation	 for	 all	 techniques	 is	 that	 after	 ensuring	 resource	
availability	they	only	approach	the	problem	in	terms	of	a	single	objective,	which	is	either	
latency	or	throughput.	None	of	the	aforementioned	techniques	embraces	multi-objective	
optimization.		
	
In	 an	 edge/fog	 realm,	other	 than	 latency	and	 throughput,	which	are	undoubtedly	key	
performance	 indicators,	 other	 objectives	 can	 affect	 the	 efficacy	 of	 a	 deployment.	
Specifically,	data	quality	can	play	an	important	role,	where	malfunctioning	nodes,	missing	
data,	corrupted	data	and	network	uncertainty	can	lead	to	less	useful	results	and	in	the	
end,	affect	performance	as	well	[14].	In	turn,	energy	consumption	can	critically	affect	the	
liveness	 of	 the	 underlying	 processing	 infrastructure	 [16].	 Specifically,	 if	 nodes	 are	
battery-powered,	 then	 scheduling	 tasks	 on	 these	 nodes	 may	 be	 beneficial	 for	
performance	at	the	current	point	in	time	but	may	not	be	available	when	actually	needed.	
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Both	 data	 quality	 and	 energy-consumption	 are	 objectives	 where	 trade-offs	 with	
performance	guarantees	can	be	explored.	
	
The	RAINBOW	Approach.	 The	RAINBOW	Analytics	 stack	offers	 its	users	with	 a	high	
level	 of	 flexibility	 in	 the	 analytics	 job	 scheduling	 process.	 Specifically,	 upon	 defining	
analytic	queries	and	packaging	 them	 in	 continuous	 jobs,	users	are	 free	 to	express	 the	
optimization	 strategy	 and	 in	 turn,	 the	 underlying	 execution	 engine	 is	 not	 bound	 to	 a	
specific	algorithm	implementation.	Towards	this,	users	specify	what	should	be	optimized,	
leaving	the	how	to	the	novel	RAINBOW	scheduling	algorithms	for	streaming	analytic	jobs.	
To	date,	users	may	leave	the	RAINBOW-tailored	baseline	Storm	scheduler	that	adopts	a	
fair	task	allocation	strategy,	opt	to	optimize	the	deployment	in	terms	of	performance,	or	
explore	 trade-offs	between	performance	and	data	quality,	or	performance	and	energy	
consumption,	to	ensure	that	computations	return	not	just	timely	results	but	also	reliable	
results	while	 the	scheduling	 is	also	energy-aware.	All	 scheduling	strategies	have	been	
designed	and	 implemented	 for	Apache	Storm	and	can	be	used	with	any	vanilla	Storm	
deployment.	However,	these	have	also	been	enhanced	and	elevated	for	RAINBOW-aware	
Storm	 deployments	 where	 configurations	 are	 automatically	 received	 and	 processed	
through	RAINBOW	Service	Graphs	and	data	can	be	streamed	and	extracted	 through	a	
RAINBOW	Spout	that	efficiently	accesses	data	through	the	RAINBOW	Storage	Fabric.	
	

2.4 Analytics Query Expressiveness and Interoperability 

The	 embedding	 of	 a	 distributed	 data	 processing	 engine	 to	 the	 deployment	 of	 an	 IoT	
service	 implies	 advanced	 knowledge	 of	 a	 particular	 programming	 model	 for	 the	
underlying	processing	engine.	This	has	the	unfortunate	requirement	of	writing	multiple	
lines	of	code	just	to	submit	a	single	query	that	results	in	a	steep	learning	curve	and	limits	
the	ability	of	IoT	platform	operators	to	quickly	submit	exploratory	and	ad-hoc	queries	
not	envisioned	beforehand	in	the	system	design	phase	[16].		
	
For	example,	it	is	the	job	of	IoT	platform	operators	to	discover	interesting	insights	from	
data	 assets,	 but	 not	 working	 out	 how	 to	 synchronize	 distinct	 dataflows	 to	 execute	
iterative	ML	tasks.	The	importance	of	this	is	highlighted	in	a	recent	Seattle	report,	where	
the	ACM	Fellows	identify	the	design	of	declarative	programming	models	decoupling	the	
definition	of	data-oriented	tasks	from	the	engineering	of	the	underlying	infrastructure	as	
a	prominent	 inhibitor	 for	advancing	Data	Science	[17].	 In	 turn,	while	 the	 landscape	of	
analytics	frameworks	is	still	fairly	open	and	non-dominant,	the	lack	of	interoperability	is	
a	considerable	hindrance	for	users.	Specifically,	switching	from	one	platform	to	another	
requires	the	re-coding	of	complex	analytic	jobs	[18].	This	means	that	any	coded	analytics	
jobs	would	have	to	be	scratched	and	re-introduced	if	the	organization	is	to	migrate	from	
one	framework	to	another	resulting	in	what	is	now	dubbed	as	the	analytics	stack	lock-in	
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[19].	 Therefore,	 the	 design	 of	 query	 abstractions	 that	 are	 decoupled	 from	underlying	
processing	 engines	 and	 which	 can	 express	 explicitly	 the	 modeling,	 compilation	 and	
optimization	needs	of	processing	analytic	insights	on	the	edge,	is	of	significant	interest.	
	
To	alleviate	the	implication	of	advanced	knowledge	of	a	programming	model,	operator	
abstractions	 have	 already	 been	 introduced	 for	 the	 distributed	 data	 processing	
frameworks,	 such	 as	 for	 Apache	 Storm	 and	 Spark.	 For	 instance,	 Trident	 [20]	 is	 a	
framework,	that	introduces	an	abstraction	layer	on	top	of	Storm.	This	provides	users	with	
high-level	operators	(i.e.,	aggregations,	filters,	joins)	applicable	to	ingested	data	streams	
with	 the	 intent	 to	 minimize	 the	 programming	 effort	 in	 designing	 DAG	 topologies.	
Similarly,	the	Spark	ecosystem	includes	two	packages	with	high-level	query	abstractions	
that	sit	on	top	of	the	Spark	engine,	namely	SparkSQL	[21]	and	Structured	Streaming	[22].	
The	former	provides	a	set	of	SQL-like	operators	on	top	of	the	Spark	programming	model,	
while	the	latter	enriches	SparkSQL	with	streaming	capabilities.	Even	if	these	approaches	
are	in	the	right	direction,	they	are	bounded	to	the	underlying	engine	and	focus	only	on	
the	 analytics	 queries	 without	 providing	 edge-	 and	 fog-oriented	 operators	 and	
optimizations.	
	
Domain-Specific	Languages	(DSLs)	offer	pre-defined	abstractions	to	represent	concepts	
from	 an	 application	 domain	 and	DSL	 compilers	 are	 rather	 optimized	 for	 this	 specific	
domain.	 Towards	 this,	 Summingbird	 [23]	 is	 a	 framework	providing	 a	 domain-specific	
language	 and	 implementation	 in	 Scala	 attacking	 the	 analytics	 lock-in	 problem.	 Users	
write	Summingbird	queries	for	MR	jobs	that	can	then	be	transparently	compiled	to	run	
on	either	or	both,	Hadoop	and	Storm.	In	turn,	Beam	(former	Google	Dataflow)	[24]	is	an	
open-source	framework	that	simplifies	the	mechanics	behind	creating	interoperable	data	
processing	pipelines.	Once	such	pipeline	is	defined,	the	user	can	then	select	to	execute	it	
on	one	of	the	supported	backends	(i.e.,	Hadoop,	Spark)	with	these	deployed	on	a	 local	
environment	(i.e.,	laptop)	or	in	the	cloud.		
	
However,	the	unique	characteristics	of	IoT	processing	and	Edge	Computing	demand	new	
operators	 to	 express	 different	 constraints	 and	 optimizations	 such	 as	 sampling,	 upper	
error-bounds,	bounded	resources,	placement	awareness,	among	others	[16].	Recently,	a	
handful	 of	 frameworks	 have	 been	 proposed	 to	 derive	 analytic	 insights	 for	 edge	
computing	and	network	telemetry.	For	example,	Edgent	(formerly	known	as	Quarks)	[25]	
is	a	framework	providing	micro-kernel	run-time	with	small	footprint	that	are	particularly	
tailored	to	running	on	IoT	gateways,	network	routers,	and	edge	devices.	Edgent	provides	
users	with	the	ability	to	denote	when	certain	query	operators	should	be	applied	on	the	
edge	and	when	data	should	be	moved	to	the	cloud	backend	for	more	complex	processing.	
Similar	 frameworks	 have	 also	 been	 proposed	 from	 the	 research	 community	 as	 well,	
including	CalculIoT	 [26]	and	λ-flow	 [3].	Tailored	 to	edge	network	 telemetry	analytics,	
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Sonata	 [27]	 is	 a	 framework	 that	offers	 scalable	 streaming	processing.	The	 framework	
provides	a	declarative	pipeline-interface	that	allows	network	operators	to	express	their	
analytic	queries.	Under	the	hood,	Sonata	uses	the	programmable	data-plane	of	network	
switches	 for	 query	 preprocessing	 and	 Spark	 for	 query	 execution.	 However,	 Sonata	 is	
developed	 solely	 for	 packet-level	 network	 telemetry	 analytics	 without	 any	
acknowledgment	for	other	types	of	data.		In	contrast	to	the	aforementioned,	StreamSight	
[28]	 (initially	developed	by	UCY)	 is	a	 framework	 for	edge-enabled	 IoT	services	which	
provides	rich	and	declarative	query	abstractions	for	expressing	complex	analytics	over	
data	streams	and	compiling	these	queries	into	streaming	processing	jobs	for	distributed	
processing	 engines.	 StreamSight	 offers	 several	 query	 operators	 to	 derive	 high-level	
analytic	 insights,	along	with	execution	optimizations	and	constraints	 tailored	 for	edge	
computing	 to	 achieve	 latency,	 robustness,	 and	 approximations	 in	 query	 execution.	
Among	 the	 optimizations	made	 available	 include	 data	 approximation	 techniques	 (i.e.,	
sampling,	 filtering),	 the	 reuse	 of	 intermediate	 query	 results	 through	 query	 compiler	
optimizations	and	the	sharing	of	query	results	among	multiple	jobs.	All	these	reduce	both	
the	computational	and	network	pressure	in	edge	deployments.	
	
The	 RAINBOW	 Approach.	 The	 RAINBOW	 Analytics	 stack	 adopts	 and	 extends	
StreamSight	 to	 provide	 users	 with	 a	 declarative	 language	 to	 define	 interoperable	
streaming	analytic	jobs	that	can	also	be	optimized	for	fog	deployments.	The	StreamSight	
query	model	considers	that	input	is	a	monitoring	metric	stream	and	output	is	again	the	
monitoring	stream	but	altered	after	the	application	of	various	operators,	including	filters,	
transformations,	aggregations,	and	groupings.	This	query	model	is	extended	to	support	
multivariate	metric	 streams	 so	 that	metrics	 logically	 grouped	 together	 (i.e.,	 collected	
through	the	same	monitoring	probe)	can	be	accessed	from	a	unified	stream	for	queries	
making	 use	 of	 more	 than	 one	 metric.	 The	 StreamSight	 query	 model	 is	 realized	 and	
implemented	 for	Spark-Streaming	with	each	 implementation	denoted	as	 an	 “analytics	
query	 compiler”.	 For	 the	purposes	of	 the	RAINBOW	project,	 two	additional	 compilers	
have	 been	 created	 and	 are	 actively	 supported.	 Specifically,	 a	 compiler	 for	 the	 vanilla	
version	of	Apache	Storm	has	been	created,	while	another	compiler	has	been	designed	for	
RAINBOW-enabled	service	graphs	and	analytic	job	optimizations	that	only	RAINBOW,	to	
date,	 supports.	 Through	 a	 StreamSight	 declarative	 query,	 any	 annotated	 analytic	 job	
optimizations	 are	 used	 to	 provide	 the	 relevant	 input	 required	 for	 the	 analytics	 job	
scheduling	and	the	provisioning	of	the	desired	RAINBOW-enabled	Scheduler.	 	
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3 Distributed Data Storage and Sharing Service 

In	this	Section,	we	present	a	comprehensive	documentation	report	referring	to	the	final	
release	of	the	Distributed	Data	Storage	and	Sharing	Service.	
	

3.1 Overview 

3.1.1 The RAINBOW Data Storage and Sharing component 

The	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 responsible	 for	 meeting	 the	
RAINBOW	 ecosystem’s	 needs	 regarding	 resilient	 data	 storage	 in	 a	 dynamic	 fog	
environment.	 To	 this	 end,	 the	 service	 provides	 a	 distributed	 solution	 comprising	
instances	communicating	with	each	other	in	a	peer-to-peer	fashion	departing	from	the	
leader-worker	paradigm;	still,	the	system	behaves	-from	the	perspective	of	its	users-	as	a	
single	coherent	cluster	and	a	single	logical	database.	The	various	micro-services	that	are	
implemented,	 make	 the	 data	 exchange	 with	 external	 components	 and	 users	 easy	 to	
execute	with	full	ACID	compliance	during	database	operations.	
	
The	 purpose	 of	 the	 service	 is	 not	 to	 create	 a	 new	 distributed	 database	management	
system,	but	 to	use	 the	most	 suitable	one	and	 implement	new	components	and	micro-
services	that	satisfy	the	requirements	of	the	fog	ecosystem.	As	such,	the	Data	Storage	and	
Sharing	 service	 builds	 upon	 the	 open-source	 distributed	 DBMS	 Apache	 Ignite	 by	
implementing	novel	data	placement	methods	as	well	as	creating	a	logical	Storage	Fabric,	
providing	a	transparent	and	lightweight	service	for	resilient	storage.	 
	
Figure	 1	 presents	 a	 high-level	 approach	 of	 the	 Data	 Storage	 service.	 The	 service	
comprises	 a	distributed	 Ignite	 cluster	with	 each	 instance	 (Storage	Agent)	deployed	 in	
each	fog	node	in	the	context	of	the	overlay	mesh	network	of	the	RAINBOW	cluster.	The	
purpose	of	each	Storage	Agent	 is	to	persistently	store	the	metadata	extracted	from	the	
Monitoring	Agent	deployed	on	the	same	fog	node,	through	ACID	transactions,	and	provide	
the	means	for	the	rest	of	the	RAINBOW	services	to	extract	them.		
	
Storage	 Agents	 communicate	 internally,	 through	 Ignite’s	 protocols	 and	 implemented	
micro-services,	creating	the	Storage	Fabric,	a	logical	entity	that	supports	one-off	queries	
and	data	extraction	through	a	decentralized	API.	Each	Agent	provides	the	way	to	extract	
either	 locally	 stored	 data	 only	 or	 data	 from	 every	Storage	 Agent	 transparently	 to	 the	
requesting	services.		
	
Furthermore,	 the	 Data	 Storage	 and	 Sharing	 service	 provides	 an	 automated	 way	 to	
replicate	and	partition	data	from	one	Agent	to	another	by	implementing	two	techniques,	



	 	

 

	 Project	No	871403	(RAINBOW)	

	 D4.2	–	Data	Management	Services	
	 Date:	31.03.2022	
	 Dissemination	Level:	PU	

	

Page 22 of 92 

Copyright © Rainbow Consortium Partners 2022 

with	 each	 one	 being	 driven	 by	 different	 problems	 in	 fog	 environments.	 The	 first	
technique	allows	the	service	to	cope	with	the	dynamic	nature	of	the	fog	ecosystem	where	
node	failures	are	a	usual	phenomenon.	A	single	Storage	Agent	(acting	as	the	cluster	head)	
continuously	monitors	the	health	of	the	cluster	by	storing	the	restarts	and	the	failures	of	
each	 instance.	 This	 allows	 the	 service	 to	 replicate	 data	 from	 unstable	 nodes	 to	more	
stable	ones	in	order	to	avoid	data	loss/unavailability	issues	due	to	fog	node	failures.		
	
The	second	technique	is	query-driven	and	cooperates	with	RAINBOW’s	Distributed	Data	
Processing	service	in	order	to	cut	down	the	network	congestion	through	minimizing	the	
latency	when	data	movement	from	a	Storage	Agent	to	an	Analytic	Worker	is	required.	By	
monitoring	the	latency	between	the	fog	nodes	and	the	location	of	the	Analytic	Workers,	
the	 technique	solves	an	optimization	problem,	considering	both	the	 freshness	and	the	
quality	of	the	data.		Moving	monitoring	metrics	to	other	nodes	may	improve	the	latency	
at	the	expense	of	staleness/freshness,	since	replicated	queried	metrics	are	available	after	
some	time	period	from	their	generation.	Instead	of	replicating	data,	the	performance	in	
terms	of	latency	may	be	improved	through	performing	data	sampling;	this	again	comes	
with	a	tradeoff,	since	it	results	in	lower	data	quality,	 if	 less	data	are	transmitted	when	
down-sampling	is	applied.	
	
Finally,	the	Data	Storage	and	Sharing	service	is	also	used	by	the	rest	of	the	RAINBOW’s	
services	to	temporarily	or	persistently	store	timestamped	data,	i.e.	the	results	of	the	
queries	running	on	the	Distributed	Data	Processing	service.	
	



	 	

 

	 Project	No	871403	(RAINBOW)	

	 D4.2	–	Data	Management	Services	
	 Date:	31.03.2022	
	 Dissemination	Level:	PU	

	

Page 23 of 92 

Copyright © Rainbow Consortium Partners 2022 

	
	
Figure	1	High-level	overview	of	the	Distributed	Data	Storage	and	Sharing	service’s	architecture	and	communication	with	

RAINBOW	components	

3.1.2 Distributed main-memory database management system - Apache Ignite 

The	 basis	 of	 the	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 the	 database	
management	system	itself.	Apache	Ignite	was	chosen	as	the	distributed	database	that	can	
be	used	as	a	main-memory	database	and	supports	different	persistent	storage	options.	It	
also	provides	different	ways	to	store	and	access	data.	
	
The	 distributed	 protocol	 of	 Ignite	 adheres	 to	 the	 serverless	 paradigm	 instead	 of	 the	
leader/worker	one	that	most	DBMSs	use.	This	allows	for	a	more	dynamic	flow	of	storage	
instances	where	a	new	instance	can	enter	the	cluster	and	an	old	one	leave	it	seamlessly,	
without	the	permission	of	another	one.	Each	new	node	that	tries	to	connect	to	the	Ignite	
cluster	needs	to	know	at	least	one	address	from	an	instance	that	is	already	part	of	it.	After	
the	 insertion,	 the	new	node	can	communicate	and	has	access	to	the	rest	of	the	cluster	
nodes.	 This	 tackles	 network	 congestion	 problems	 that	 arise	 from	 the	 leader/worker	
paradigm,	where	all	nodes,	trying	to	connect	to	the	cluster,	need	to	communicate	with	the	
leader	 instance	exclusively.	The	number	of	nodes	 in	 a	 cluster	 can	go	up	 to	 thousands	
preserving	linear	performance.	 
 
Ignite	provides	three	different	types	of	instances,	namely	Server,	Client	and	Thin	Client.	
Server	 instances	 are	 mainly	 responsible	 for	 storing	 data.	 Client	 instances	 can	 access	
stored	data	and	either	perform	computations	or	query	the	data.	Thin	clients	are	smaller	



	 	

 

	 Project	No	871403	(RAINBOW)	

	 D4.2	–	Data	Management	Services	
	 Date:	31.03.2022	
	 Dissemination	Level:	PU	

	

Page 24 of 92 

Copyright © Rainbow Consortium Partners 2022 

versions	 of	 the	 Client	 type	 that	 attach	 to	 a	 specific	 node	 for	minor	 computations	 and	
querying.		
 
The	data	structure	that	 is	used	to	store	data	is	called	cache.	It	 is	a	key-value	structure	
where	both	the	key	and	the	value	can	be	any	type	of	object,	 i.e.,	 Java	class.	It	supports	
three	modes	of	caches,	each	one	serving	different	needs.	The	first	one	is	the	LOCAL	mode	
in	 which	 the	 data	 are	 stored	 locally	 and	 can	 only	 be	 accessed	 by	 the	 specific	 Server	
instance	that	stored	them	or	by	a	Thin	Client	attached	to	that	Server.	Each	time	a	LOCAL	
cache	is	initialized,	it	is	created	in	every	node	of	the	cluster,	regardless	of	whether	it	will	
be	used.	The	second	mode	is	the	PARTITIONED	cache	which	partitions	the	data	to	the	
different	 server	 nodes	 in	 a	 balanced	 manner.	 A	 backup	 policy	 is	 available	 for	 the	
PARTITIONED	mode	in	order	to	tackle	loss	of	partitions	problems.	The	final	mode	is	the	
REPLICATED	one	which	replicates	every	data	point	to	every	other	node	in	the	cluster.	
Furthermore,	the	data	from	each	cache	can	be	accessed	either	through	the	key	or	an	SQL-
like	interface.	
	
Finally,	each	instance	can	run	custom-made	micro-services	depending	on	the	needs	of	the	
user.	 The	 deployment	 can	 be	 achieved	 either	 by	 using	 custom	 instance	 filters	 or	 by	
providing	deployed	instances	for	each	service.	An	instance	can	access	remote	instances	
on	different	(fog)	nodes.	
	
Apache	Ignite	is	the	basis	for	the	Distributed	Data	Storage	and	Sharing	service	due	to	the	
above	features.	First,	it	allows	the	user	to	create	local	caches	without	the	use	of	the	default	
partitioning/replication	schemes.	Secondly,	it	guarantees	consistency	and	fully	supports	
ACID	transactions	while	providing	main-memory	I/O,	which	is	an	important	aspect	for	
RAINBOW.	 Furthermore,	 the	 serverless	 paradigm	 enables	 quick	 and	 lightweight	
movement	of	storage	instances	in	and	out	of	the	cluster.	Finally,	the	custom-made	micro-
services	that	 Ignite	offers	to	the	user	can	support	the	decentralized	API	and	the	novel	
data	placement	methods,	replacing	the	default	partitioning/replication	schemes,	that	are	
integral	to	the	service. 
 

3.1.3 Leveraging Apache Ignite for RAINBOW 

The	RAINBOW	Data	Storage	and	Sharing	service	implements	Ignite’s	Server	instance	type	
with	 two	 flavours	 and	 deploys	 them	 on	 the	 different	 nodes	 based	 on	 the	 desired	
functionality.	The	first	one	is	the	common	Server	instance	that	is	used	for	data	extraction	
and	 ingestion	and	 is	deployed	on	every	 fog	node	with	 the	RAINBOW	mesh	stack.	The	
second	flavour	is	an	extension	of	the	first	one,	meaning	that	it	can	also	store	and	extract	
data	 with	 the	 addition	 of	 monitoring	 the	 cluster’s	 health	 along	 with	 taking	 data	
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movement	decisions	based	on	the	data	placement	techniques.	It	is	deployed	on	the	cluster	
head,	usually	a	resource-rich	fog	node	or	a	cloud	node.	
	
The	cluster	head	instance	is	the	first	one	deployed	and	initializes	the	cache	creation	and	
the	micro-services	 that	will	 be	 running	 on	 the	 cluster.	 The	 rest	 of	 the	 instances	 start	
running	afterwards	and	are	immediately	connected	to	the	cluster	through	the	address	of	
the	head.	
	
Each	Storage	Agent	is	responsible	for	storing	the	local	data	that	are	produced	through	the	
fog	node’s	Monitoring	Agent.	The	instance	contains	two	local	caches	in	cooperation	with	
a	 replicated	 cache	 for	 the	 storage.	 All	 of	 them	 are	 key-value	 caches	 with	 SQL-like	
properties,	such	as	indices	on	different	fields.	The	first	one	is	a	purely	in-memory	cache	
and	stores	only	the	latest	values	from	the	monitoring	metrics.	This	cache	is	used	for	quick	
I/O	 of	 the	 metrics	 from	 the	 different	 RAINBOW	 services	 that	 require	 them,	 i.e.,	 the	
Distributed	Data	Processing	service.	The	second	cache	is	used	to	persistently	store	the	
historical	values	of	the	monitoring	metrics	up	to	a	user-specified	time	range.	The	time	
range	 is	 used	 to	 limit	 the	 volume	 of	 data	 and	 the	memory	 resources	 needed	 for	 the	
storage.	The	third	cache	is	available	to	persistently	store	metadata	on	each	monitoring	
metric	that	is	ingested	through	the	Monitoring	Agents.	This	cache	is	replicated	to	every	
Storage	Agent	with	each	one	of	them	having	direct	access	to	the	metadata	of	all	the	stored	
metrics.	Figure	2	presents	the	schemas	for	each	cache	with	the	keys	being	above	the	line	
and	the	values	below. 
 

	
Figure	2	Monitoring	schemas	with	indices 

In	 addition	 to	 the	 aforementioned	 caches	 that	 are	 exclusively	 tailored	 to	 monitoring	
metrics,	there	are	four	others,	with	each	one	having	a	different	functionality.	In	order	to	
store	analytic	results	and	temporary	data	from	the	rest	of	the	RAINBOW	services,	two	
caches	for	timestamped	data	are	used.	Both	are	similar	with	each	other,	with	the	only	
difference	being	 the	persistency.	One	of	 them	stores	data	purely	 in-memory	while	 the	
other	one	uses	the	disk	for	persistent	storage	with	eviction	options	to	restrict	disk	space	
usage.	
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The	final	two	caches	are	used	by	the	cluster	head	to	store	the	restarts	and	failures	of	each	
Storage	Agent	and	the	data	points	that	have	been	replicated	alongside	their	destinations.	
Both	caches	persistently	store	data	to	the	disk	and	are	used	by	the	data	placement	micro-
service	to	make	decisions	on	possible	future	data	placement	sources	and	destinations.		
	
Each	Storage	Agent	runs	three	micro-services	that	help	with	data	ingestion	and	extraction	
through	a	REST	API	with	private	endpoints	available	only	to	the	rest	of	the	RAINBOW	
services.	 The	 cluster	 head	 contains	 an	 additional	 micro-service	 that	 monitors	 the	
cluster’s	 health	 and	 decides	 the	 data	 placement	 options	 based	 on	 the	 two	 novel	
techniques	described	in	the	next	section.	
	

3.1.4 Data placement algorithms 

In	order	to	cope	with	the	dynamic	nature	of	the	fog	ecosystem	as	well	as	minimize	data	
movement	through	the	local	network,	two	novel	data	placement	techniques	have	been	
introduced	to	the	Distributed	Data	Storage	and	Sharing	service.	The	first	one	is	based	on	
the	stability	of	 the	 fog	nodes	 in	 the	RAINBOW	cluster	and	replicates	data	points	 from	
unstable	nodes	to	more	stable	ones.	The	second	one,	cooperates	with	the	Distributed	Data	
Processing	service	to	minimize	the	data	movement	from	one	fog	node	to	another	when	
the	queries	require	it.	
	
The	result	of	both	techniques	is	to	replicate	the	monitoring	metrics	stored	on	one	Storage	
Agent	to	at	least	one	other.	After	the	decision	for	the	placement	has	been	made,	any	new	
ingested	 values	 for	monitoring	metrics,	 that	 belong	 to	 the	 set	 of	 data	 points	 that	 are	
replicated,	are	also	ingested	by	the	replica	destination	node.	The	techniques	are	used	in	
the	service	instead	of	the	replication	and	partitioning	methods	that	the	DBMS	itself	uses,	
which	is	based	on	balancing	the	data	on	the	set	of	cluster	nodes.	
	

3.1.4.1 Stability-based placement 

The	rationale	of	this	technique	is	to	replicate	the	monitoring	metrics	of	the	Storage	Agents	
on	fog	nodes	that	are	unstable	to	the	more	stable	ones	of	the	cluster.	This	tackles	the	main	
problem	of	the	fog	environments,	which	is	the	increased	node	failure	rate	compared	to	
cloud	environments.	The	replication	prevents	data	loss,	when	a	failure	occurs	since	the	
data	can	be	retrieved	from	the	remote	nodes	where	the	replicas	are	stored.	This	process	
is	part	of	the	Data	Storage	and	Sharing	service	and	uses	the	distributed	DMBS's	internal	
communication	protocol,	which	is	faster	and	more	secure	than	using	external	APIs	and	
services.	The	cluster	head	instance	monitor	the	health	of	the	cluster	in	the	background,	
storing	 both	 restarts	 and	 failures	 for	 each	 fog	 node,	 while	 it	 periodically	 runs	 the	
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placement	algorithm	that	takes	the	decision	whether	a	node's	data	need	to	be	replicated	
or	not.	
	
Ignite	creates	many	types	of	events,	from	cache-related,	such	as	writing/reading	data,	to	
node-type	ones;	the	latter	refer	to	node	restarts,	failures	and	insertions	in	the	cluster.	A	
single	listener	daemon	is	created	in	the	cluster	head	that	monitors	the	cluster's	health	
and	each	time	a	node-type	event	is	reported,	it	is	immediately	being	registered	and	stored	
in	the	respective	cache,	called	status,	available	to	every	Storage	Agent	in	the	cluster.	This	
cache	stores,	for	each	node	X	in	the	cluster,	the	value	that	contains	the	timestamp	(X.start)	
that	 the	 instance	 was	 first	 introduced	 in	 the	 cluster	 along	 with	 two	 lists,	 X.fails	 and	
X.restarts,	containing	each	timestamp	that	the	node	failed	or	restarted	respectively.	
	
The	algorithm	runs	in	specific	time	intervals	and	finds	the	most	unstable	nodes	in	order	
to	replicate	their	data	to	the	most	stable	ones.	The	first	step	of	the	process	is	to	find	the	
unstable	nodes	of	 the	storage	cluster.	 It	computes	a	cost	 function	U(x)	 for	each	stored	
node	X	 in	the	status	cache.	The	cost	function	is	based	on	the	number	of	node's	failures	
along	with	the	time	period	between	them	and	is	computed	using	the	following	equation:	
	

𝑈(𝑥) = 	 ' (𝑎/(𝑋. 𝑓𝑎𝑖𝑙𝑠[𝑖]. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑋. 𝑓𝑎𝑖𝑙𝑠[𝑖 − 1]. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)9
!.#$%&'.'%()

%*+
+ 𝑎/(𝑋. 𝑓𝑎𝑖𝑙𝑠[0]. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑋. 𝑠𝑡𝑎𝑟𝑡)	

	
	
The	a	variable	is	a	dynamic	variable	that	is	based	on	the	age	of	the	failure	and	the	number	
of	failures	for	specific	time	periods,	having	an	increased	value	for	the	most	recent	ones.	
At	the	beginning	of	the	process,	we	split	the	failures	into	three	distinct	time	periods.	The	
first	one	(old)	contains	the	failures	that	are	older	than	a	week,	the	second	one	(mid)	refers	
to	the	failures	older	than	2	days	but	newer	than	a	week	and	the	final	one	(new)	contains	
the	failures	in	the	last	2	days.	Considering	the	three	time	periods,	variable	a	is	computed	
based	on	the	following	equation:		
	

𝑎 = =
0.5 ∗ 𝑓𝑎𝑖𝑙𝑠. 𝑓𝑖𝑙𝑡𝑒𝑟(𝑜𝑙𝑑). . 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ 𝑜𝑙𝑑
𝑓𝑎𝑖𝑙𝑠. 𝑓𝑖𝑙𝑡𝑒𝑟(𝑚𝑖𝑑). . 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ 𝑚𝑖𝑑

2 ∗ 𝑓𝑎𝑖𝑙𝑠. 𝑓𝑖𝑙𝑡𝑒𝑟(𝑛𝑒𝑤). . 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ 𝑛𝑒𝑤
	

	
The	process	assigns	an	increased	score	to	the	nodes	with	recent	failures	compared	to	the	
ones	with	many	old	ones.	This	helps	to	identify	the	nodes	that	might	be	more	prone	to	
failures,	since	they	may	have	problems	with	resource	congestion	and	power	failures	that	
could	need	actions	 to	be	 resolved.	On	 the	other	hand,	 the	nodes	with	old	 failures	 are	
probably	 less	prone	 to	new	ones,	 since	 these	problems	are	most	probably	 fixed	 since	
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then.	Moreover,	 nodes	 that	 have	 recently	 been	 chosen	 as	 unstable	 for	 replication	 are	
removed	 from	 the	 list	 as	 well	 as	 nodes	 that	 have	 reached	 a	 maximum	 capacity	 for	
outgoing	replicas.	Since	the	continuous	increase	of	the	cost	for	nodes	can	cause	problems	
for	newly	created	ones	that	experience	frequent	failure,	i.e.,	the	older	node	will	have	a	
bigger	 score	 than	 the	 newer	 one,	 the	maximum	 capacity	 stops	 the	 older	 nodes	 from	
always	be	on	the	top	of	 the	 list.	At	 the	end,	 the	 function	returns	the	N	nodes	with	the	
highest	scores	based	on	the	cost	function.		
	
The	second	part	of	the	algorithm	uses	a	similar	process	to	rank	the	nodes	based	on	their	
stability	 by	 using	 a	 different	 cost	 function.	 The	 following	 equation	 presents	 the	 cost	
function	S(x)	that	computes	the	stability	score	for	each	node	X:	
	

𝑆(𝑥) = −(𝑋. 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠. 𝑠𝑖𝑧𝑒 + 3 ∗ 𝑋. 𝑓𝑎𝑖𝑙𝑠. 𝑠𝑖𝑧𝑒) ∗ (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑋. 𝑠𝑡𝑎𝑟𝑡)	
	
This	cost	function	uses	a	combination	of	the	failures	and	the	restart	times	(which	contain	
scheduled	restarts)	and	returns	its	product	with	the	time	that	it	is	alive.	A	node	with	no	
failures	and	restarts	gets	a	score	of	0,	which	is	the	highest	expected	score.	Moreover,	to	
further	build	upon	 the	stability	of	a	node,	 the	process	 ignores	every	 instance	 that	has	
failed	more	than	once	or	that	have	been	unstable	recently.	The	function,	similarly,	to	the	
previous	one,	returns	the	N	nodes	with	the	highest	stability	score.	
	
The	final	part	of	algorithm	decides,	for	each	unstable	node,	the	destination	of	its	data	from	
the	stable	pool.	The	process	is	straightforward	and	for	each	unstable	node,	it	chooses	the	
first	stable	one	and	removes	it	from	the	pool.	This	helps	to	reduce	the	workload	from	a	
single	stable	node	if	it	was	chosen	as	the	destination	for	more	than	one	unstable	nodes.	
An	exception	in	this	function	occurs	when	a	node	from	the	top	50%	of	the	stable	pool	has	
a	subset	of	the	unstable	node's	data.	In	this	case,	the	rest	of	the	data	from	the	unstable	
node	are	also	replicated	to	complete	a	full	replica.	
	

3.1.4.2 Query-based placement 

RAINBOW	ecosystem	consists	of	multiple	fog	computing	nodes,	denoted	as	𝐶𝑁.	Each	pair	
of	nodes	(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝐶𝑁,	has	a	specific	communication	latency,	𝑙𝑎𝑡(𝑢, 𝑣).	These	nodes	
also	act	as	sources,	by	hosting	the	Monitoring	and	Storage	Agents	to	produce	and	store	
local	 monitoring	 metrics.	 In	 this	 network,	 users	 submit	 queries	 for	 analysis	 to	 the	
Distributed	Data	 Processing	 service	 that	 are	 translated	 into	 Apache	 Storm	 topologies	
which	consist	of	vertices	𝑖.	The	vertices	comprise	spouts	𝑆,	which	acquire	data,	and	bolts,	
which	execute	the	analysis	part.	The	aim	of	the	proposed	policy	is	to	decide	from	which	
node	𝑢,	a	spout𝑖will	receive	data;	this	is	essentially	a	decision	on	the	placement	of	spouts.	
The	 placement	 of	 the	 bolts	 is	 decided	 using	 RAINBOW’s	 Distributed	 Data	 Processing	
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query	scheduling	algorithms.	We	use	the	binary	variable	𝑥%,- = 1	to	denote	that	spout	𝑖 ∈
𝑆	will	receive	data	from	node	𝑢 ∈ 𝐶𝑁.		
	
Each	spout	can	receive	data	either	from	a	source	node	or	from	a	node	that	holds	or	can	
hold	replicated	data.	If	a	spout	is	assigned	to	the	node	that	is	also	its	input	source,	then	
the	transfer	time	cost	is	zero.	However,	in	some	cases,	this	node	may	not	be	available	to	
execute	a	spout	or	 it	may	have	been	defined	as	unstable.	 In	the	 latter	case,	 the	source	
node's	data	needs	to	be	replicated	to	other	nearby	nodes.	This	data	replication	incurs	an	
extra	delay,	due	to	the	time	it	takes	to	transfer	data	from	the	source	to	the	replica	location.	
The	time	for	a	spout	𝑖	to	receive	data	from	a	replica	location	or	a	source	node	is	denoted	
as	𝐷(𝑖, 𝑢), 𝑢 ∈ 𝐶𝑁% ,	where	𝐶𝑁% 	is	the	subset	of	fog	nodes	from	where	a	spout	𝑖	can	receive	
data.	 Essentially,	𝐷(𝑖, 𝑢)	 quantifies	 the	 freshness	 degradation	 (i.e.,	 staleness)	 of	 input	
data.			
	
Without	loss	of	generality	(since	we	focus	only	on	data	placement	in	this	algorithm),	we	
assume	that	the	actual	analysis	of	data	is	either	encapsulated	in	a	single	bolt	or	that	all	
the	bolts	are	assigned	to	a	single	fog	node,	𝑢. .	This	node	is	known	beforehand	and	the	
time	to	transfer	data	from	a	spout	to	this	node	is	considered	in	the	cost	model	and	is	equal	
to	𝑙𝑎𝑡(𝑢, 𝑢.),	where	𝑢	is	the	node	that	sends	data	to	the	spout.			
The	overall	latency	of	the	query,	denoted	as	𝐿,	is	calculated	using	the	following	formula:		
	

𝐿 = 𝑚𝑎𝑥{ ' (𝑙𝑎𝑡(𝑢, 𝑢.) ∗ 𝑥%,-9}
-∈01!

, ∀𝑖 ∈ 𝑆	

	
Moreover,	the	solution	can	opt	to	down-sample	initial	data	to	reduce	the	query	latency.		
More	specifically,	a	sampling	technique	can	be	performed	on	the	input	data,	such	as	to	
minimize	their	transfer	time	through	the	network.	The	quality	degradation, 𝑞% 	of	a	spout	
𝑖	is	a	continuous	variable	in	the	range	between	0.1	and	1	(the	lower	the	𝑞%;	the	higher	the	
quality	reduction)	that	defines	the	sampling	selectivity	and	affects	the	query's	latency	as	
follows:			
	

𝐿 = 𝑚𝑎𝑥{ ' (𝑙𝑎𝑡(𝑢, 𝑢.) ∗ 𝑥%,-9
-∈01!

∗ 𝑞%}, ∀𝑖 ∈ 𝑆	

	
In	general,	 the	optimization	problem	considers	 the	overall	 latency,	 the	data	 freshness	
degradation,	and	the	data	quality	while	keeping	the	quality	above	a	given	threshold	𝑄.	
The	objective	is	described	by	the	following	formula:		
	

𝐹 =
𝐿 ∗ (𝛽 +𝑚𝑎𝑥{∑ (𝐷(𝑖, 𝑢) ∗ 𝑥%,-9}-∈01! 9

𝑚𝑖𝑛𝑞%}, ∀𝑖 ∈ 𝑆
	



	 	

 

	 Project	No	871403	(RAINBOW)	

	 D4.2	–	Data	Management	Services	
	 Date:	31.03.2022	
	 Dissemination	Level:	PU	

	

Page 30 of 92 

Copyright © Rainbow Consortium Partners 2022 

	
where	𝛽	 is	a	constant	variable.	The	denominator	𝑞% 	aims	to	penalize	excessive	quality	
reduction	of	a	single	spout.	The	formulation	of	the	optimization	problem	is	provided	by:		
	

𝑚𝑖𝑛𝐹(𝑥, 𝑞)	
	

𝑠. 𝑡 ' 𝑥%,-
-∈01!

= 1, ∀𝑖 ∈ 𝑆	

	
𝑥%,- ∈ {0,1}, ∀𝑖 ∈ 𝑆, 𝑢 ∈ 𝐶𝑁% 	

	
𝑎𝑣𝑔%∈2(𝑞%) ≥ 𝑄	

	
𝑞% ∈ [0.1,1], ∀𝑖 ∈ 𝑆	

	
The	decision	variables	are	both	the	𝑥%,-	and	the	𝑞% 	ones.	This	results	in	a	NP-hard	problem,	
which	is	broken	down	into	two	ILP	subproblems.	First,	the	optimal	node	from	which	each	
spout	will	receive	data	is	decided,	using	a	solver	such	as	Gurobi	17.	Next,	quality	reduction	
is	examined	and	using	the	same	solver,	the	sampling	ratio	for	each	spout	is	decided.	
	

3.2 Requirements Fulfillment 

ID	 FR.DSS.1	

Title	 Storage	for	real-time	and	historical	monitoring	data	

Requirement	
Description	

The	Distributed	Data	Storage	and	Sharing	service	must	provide	
the	means	to	store	both	real-time	and	historical	monitoring	data	
using	efficient	data	structures	for	fast	read/write	query	
operations.	

Validation	 Completed	 	Status	 	Fulfilled	

The	Distributed	Data	Storage	and	Sharing	service	 initializes	and	uses	three	distinct	
data	structures	(Ignite	caches)	to	provide	access	to	both	latest	and	historical	values	
for	the	monitoring	metrics	using	its	ingestion	and	extraction	services.	The	values	and	
the	metrics’	metadata	(i.e.,	description)	are	stored	in	separate	caches	to	cut	down	the	
storage	size	and	decrease	the	process	time	when	only	the	values	need	to	be	updated.	
Furthermore,	the	service	uses	both	in-memory	and	a	combination	of	in-memory	and	
disk	options	for	storage	to	reduce	the	I/O	times.	A	pure	in-memory	cache	is	used	to	

	
17	https://www.gurobi.com	
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store	the	latest	values	for	all	monitoring	metrics	while	a	cache	that	fits	a	subset	of	the	
data	 in-memory	 and	 stores	 them	persistently	 in	 the	 disk	 is	 used	 for	 the	 historical	
values.		
	
During	data	ingestion,	the	incoming	metrics	are	written	firstly	to	the	in-memory	cache	
and	afterwards	 to	 the	 combination	cache.	The	 runtime	of	 the	 in-memory	 ingestion	
process	is	greatly	decreased	since	it	stores	the	data	exclusively	to	the	main-memory.	
Also,	the	second	write	process	runtime	is	hidden	in	the	background	since	the	values	
are	already	available	in-memory	for	a	data	extraction	query.		
	
Data	 extraction	 is	 completed	 using	 the	 respective	 cache	when	 only	 the	 latest	 or	 a	
subset	(or	all)	of	the	historical	values	are	queried.	Similarly,	to	the	ingestion	process,	
the	output	runtime	of	the	in-memory	cache	is	negligible	since	only	the	main-memory	
is	 involved.	Even	when	 the	historical	 values	of	 a	metric	 are	due	 for	extraction,	 the	
historical	 cache	 starts	 by	 checking	 the	 data	 pages	 that	 are	 stored	 in-memory	 and	
afterwards	tries	to	find	the	rest	of	the	data	from	the	disk	pages.	This	cuts	down	the	
runtime,	 especially	when	all	 of	 the	 requested	data	 are	 stored	 in	 the	main-memory	
pages.	Furthermore,	when	a	query	is	periodically	executed,	the	data	pages	holding	the	
resulting	data	are	transferred	to	the	main-memory,	replacing	the	pages	that	have	not	
been	active	recently.		
	
In	 order	 to	 test	 the	 effectiveness	 of	 the	 data	 ingestion	 and	 extraction,	 we	 have	
completed	a	set	of	experiments	in	a	physical	machine	with	4GB	RAM,	a	2-core	CPU	and	
a	7200RPM	HDD.	
	
The	left	plot	from	the	figure	below,	presents	the	average	number	of	metrics	that	can	
be	ingested	per	millisecond	from	the	in-memory	and	the	persistent	cache,	while	the	
right	plot	presents	the	total	ingestion	time	for	both	cases.	The	x	axis	represents	the	
total	number	of	different	metrics	that	where	ingested	as	a	batch.	As	expected,	the	in-
memory	 speed	 is	 approximately	 4.5%	 of	 the	 disk	 speed	 being	 able	 to	 write	
approximately	2.6	values	per	ms.	Furthermore,	the	speed	of	both	caches	is	linear	in	
comparison	to	the	number	of	values	ingested.		
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The	second	set	of	experiments	present	the	extraction	performance	of	the	component.	
The	left	plot	indicates	the	runtime	it	takes	to	get	the	API	response	during	an	extraction	
request	for	different	metric	sizes.	The	x	axis	presents	the	percentage	of	the	requested	
values	from	the	total	(1000)	stored	values	of	each	metric.	The	“Latest	value”	column	
indicates	that	only	the	in-memory	cache	for	the	latest	value	of	each	metric	was	used.	
Building	upon	the	previous	experiment,	 the	 in-memory	cache	speed	 is	significantly	
increased	 in	 comparison	 to	 the	 persistent	 cache,	 while	 the	 performance	 is	 linear	
compared	to	the	requesting	percentage.	
	
Finally,	 the	 right	 plot	 presents	 the	 in-memory’s	 performance	when	 requesting	 the	
latest	value	 for	different	metric	 sizes.	A	point	of	 importance	 in	 this	plot	 is	 the	 two	
rightmost	columns	where	the	values	for	all	metrics	are	requested.	On	the	first	case,	
the	metrics	are	explicitly	requested,	while	on	the	second	case	the	storage	agent	needs	
to	 first	 find	 the	 set	 of	 local	 metrics	 and	 afterwards	 extract	 their	 values,	 thus	 the	
difference	in	the	runtimes.	
	

	
	

	
ID	 FR.DSS.2	

Title	 Historical	data	eviction	based	on	user-desired	eviction	
policies	
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Requirement	
Description	

The	Data	Storage	and	Sharing	service	must	provide	the	means	to	
control	the	time	range	of	the	historical	data	(data	eviction	period). 
This	in	turn	limits	the	volume	of	the	persistent	data	and	the	
memory	resources	needed	by	the	service	so	that	even	fog	nodes	
with	limited	storage	capabilities	can	be	supported.	

Validation	 Completed	 	Status	 	Fulfilled	

The	Distributed	Data	Storage	and	Sharing	service	is	built	on	top	of	Apache	Ignite	which	
uses	data	regions	to	store	ingested	data.	The	service	creates	two	distinct	regions,	with	
the	 first	 one	 using	 only	 the	 main-memory	 for	 storage,	 while	 the	 second	 one	
persistently	stores	data	on	disk	concurrently	with	main-memory	usage	for	faster	I/O.	
The	data	regions	are	fully	configurable	from	the	data	page	size	to	the	total	storage	size.	
In	our	solution	the	default	storage	size	is	256MB	for	each	data	region.	The	size	can	be	
configured	during	the	deployment	of	the	service	depending	on	the	node	resources.	
	
Furthermore,	a	data	eviction	policy	is	always	running	in	the	background	flushing	older	
data	pages	from	both	disk	and	the	main-memory.	The	default	eviction	period	is	168	
hours	(1	week)	where	data	points	that	have	been	ingested	before	the	specified	period	
are	 deleted	 from	 storage.	 The	 eviction	 period	 can	 be	 configured	 during	 the	
deployment	 of	 the	 service	 depending	 on	 the	 user	 preferences	 and	 the	 fog	 node’s	
resources.	
	
Combining	both	of	the	aforementioned	options,	the	service	limits	the	total	size	of	the	
main-memory	used	for	storage	as	well	as	the	disk	space	usage	where	pages	are	flushed	
when	the	eviction	policy	deems	it	necessary.	Both	limiters	are	especially	useful	in	a	
fog	environment	where	resources	are	sparse	and	the	service	should	not	intrude	with	
the	RAINBOW	users’	applications.	
The	 following	 plot	 presents	 the	 linear	 increase	 in	 OffHeap	 size	 (main-memory	
storage)	when	storing	thousands	of	metrics	along	with	their	values.	In	this	case,	when	
up	 to	 100	 thousand	different	metrics	with	 a	 single	 value	 are	 stored,	 the	needs	 for	
memory	go	up	to	60MB.	This	means	that	on	the	default	parameterization	(256MB	of	
main-memory	space),	the	component	can	store	up	to	427	thousand	metrics.	This	can	
also	 be	 translated	 to	 either	 427	 thousand	 different	 single-value	 metrics	 or	 a	
combination	of	a	smaller	number	of	metrics	with	more	values,	e.g.,	1000	metrics	with	
427	values	for	each.		
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ID	 FR.DSS.3	

Title	 Efficient	partitioning	and	replication	algorithms	

Requirement	
Description	

The	Data	Storage	and	Sharing	service	must	provide	the	means	to	
efficiently	utilize	the	underlying	fog	resources	by	partitioning	
and/or	replicating	stored	data	when	needed.	

Validation	 Completed	 	Status	 	Fulfilled	

The	Distributed	Data	Storage	and	Sharing	service	is	built	on	top	of	Apache	Ignite,	an	
inherent	distributed	DBMS.	Ignite’s	mechanisms	try	to	balance	the	data	volume	on	the	
set	 of	 homogeneous	 and	 well-connected	 cluster	 nodes.	 In	 our	 solution,	 we	
implemented	two	novel	techniques	that	take	into	account	the	fog	instability	as	well	as	
the	network	limits	during	data	movement.		
	
The	first	technique	tackles	the	data	availability	problem	due	to	unstable	fog	nodes	by	
replicating	their	data	to	remote	instances.	The	first	set	of	experiments	presents	the	
instability	of	 the	nodes	 (first	 figure)	and	an	unstable	node’s	 cost	 function	progress	
during	its	lifetime	(second	figure).		
	
The	 experiment	 is	 a	 simulation	 of	 5000	 iterations	with	50	 fog	nodes.	 The	 fail	 rate	
follows	a	zipfian	distribution	with	most	of	the	nodes	having	approximately	0.01%	of	
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failure	and	only	3	nodes	having	0.27%	up	to	0.86%	rate.	As	expected,	in	the	first	figure	
the	nodes	with	higher	failure	rate,	have	an	increased	number	of	failures	and	only	5	
nodes	from	the	rest	experience	a	single	failure	during	the	total	set	of	iterations.	
	
The	second	figure	presents	the	progress	of	the	cost	function	measuring	the	instability	
of	 the	 node	with	 the	 highest	 failure	 rate	 (0.86%)	during	 its	 lifetime.	 Based	 on	 the	
equation	and	the	progress	plot,	the	cost	is	increased	each	time	a	failure	occurs	on	the	
node,	while	being	close	in	time	to	the	previous	failure.	The	score	is	further	increased	
when	the	node	has	been	alive	for	a	longer	time	period.	Since	this	can	cause	problems	
for	newly	created	nodes	that	experience	frequent	failure,	i.e.,	the	older	node	will	have	
a	bigger	score	than	the	newer	one,	a	constant	number	for	the	maximum	capacity	of	
outgoing	replicas	for	an	unstable	node	is	used.	
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The	second	technique	(section	Query-based	placement)	considers	the	network	links	
between	the	fog	nodes	as	well	as	the	data	freshness	and	quality	in	order	to	decide	the	
replication	destination	for	a	source	node.	
	
The	 second	 set	 of	 experiments	 aim	 to	 evaluate	 the	 query-based	 data	 placement	
technique.	The	comparison	is	against	a	baseline	that	assigns	spouts	only	on	the	source	
nodes,	using	no	replication;	this	baseline	is	denoted	as	src.	Essentially,	in	the	baseline,	
𝐷(𝑖, 𝑢)	is	always	zero.	
	
In	the	experiment,	the	number	of	spouts	is	set	to	10	and	we	experiment	with	different	
number	of	fog	nodes,	specifically	25,	50	and	100.	Each	node	can	host	up	to	5	or	10	
replicas.	The	communication	cost	between	nodes	is	uniformly	distributed	in	the	range	
[0.1,	 10]	 and	we	 simulate	 bottlenecks	 or	malfunctioning	 nodes	 through	 increasing	
their	communication	latencies	by	a	factor	produced	by	ipfian	distribution.	Finally,	the	
𝛽	value	is	set	to	1	and	𝑄	to	0.8.	
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The	previous	figure	presents	the	experiment	results	for	different	numbers	of	nodes	
and	maximum	 number	 of	 replicas	 per	 node.	 Each	 experiment	was	 conducted	 500	
times	and	the	runs,	where	the	use	of	replicas	is	profitable,	are	examined.	We	show	the	
percentage	 of	 reduction	 on	 𝐿	 and	 𝐹;	 10%	 reduction	 is	 that	 query-based	 data	
placement	strategy	decreases	the	corresponding	value	of	the	src	by	10%.		
	
We	 examine	 the	 cases	 both	 when	 quality	 degradation	 is	 not	 allowed	 (denoted	 as	
simple	𝐿	and	𝑄	in	the	figures)	and	when	it	is	allowed	(denoted	as𝐿3 , 𝐹3).		The	dotted	
green	 and	 solid	 blue	 lines	 represent	 the	 average	 percentage	 of	 maximum	 quality	
degradation	 of	 RAINBOW’s	 solution	 and	 src,	 respectively.	 From	 the	 plots,	 we	 can	
observe	 that	when	 quality	 degradation	 is	 allowed,	 the	 improvements	 over	 src	 are	
lower,	 as	 expected.	 But	 still,	 they	 are	 significant	 and	 they	 can	 reach	 an	 order	 of	
magnitude	for	the	 latency	(decreases	of	90%).	Regarding	the	times	that	replication	
was	chosen,	these	were	4.4%,	12.2%,	4.6%,	9.2%,	4.6%,	13.6%	for	the	A,	B,	C,	D,	E,	F	
cases	 in	the	figure,	respectively.	Two	additional	observations	are	as	 follows:	(i)	 the	
more	the	replicas	allowed	per	node,	the	more	the	cases,	where	query-driven	replica	
generation	is	decided;	and	(ii)	the	more	the	maximum	number	of	allowed	replicas	and	
the	more	the	nodes,	the	higher	the	decrease	in	latency	and	the	𝐹	objective	function.	
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Regarding	data	freshness,	in	following	figure,	we	present	the	ratio	of	data	freshness	
degradation	delay	and	latency	for	the	(F)	case.	In	most	of	the	cases,	the	ratio	is	below	
1	which	means	the	freshness	degradation	delay	𝐷,	does	not	exceed	the	Latency	𝐿	while	
the	mean	ratio	is	1.63	and	the	median	value	is	0.25.	

	

	
Finally,	we	examine	a	scenario	with	50	nodes	and	10	replicas,	where	no	bottleneck	
nodes	exist.	That	essentially	means	that	we	do	not	weight	the	communication	latency	
of	certain	nodes	using	a	zipfian	distribution.	We	compare	with	case	(D)	from	the	first	
figure.	The	results	presented	in	Table	2	show	that	the	technique	is	capable	of	yielding	
lower	but	tangible	improvements	even	in	the	most	challenging	(but	not	realistic)	case,	
where	the	communication	delays	follow	a	uniform	distribution.	
	

Table	2	Average	L	and	F	percentage	of	reduction	over	src	

	 w/o	bottlenecks	 w/	bottlenecks	(D)	
𝐹	 15.06	 25.0	
𝐿	 45.77	 73.42	

%	of	optimized	runs	 5.0	 9.2	
	

	
ID	 FR.DSS.4	

Title	 Secure	data	access	

Requirement	
Description	

The	Data	Storage	and	Sharing	service	must	provide	the	means	to	
access	the	storage.	The	access	can	either	be	used	for	writing	or	
querying	data.	Additionally,	the	data	should	be	available	to	the	
requesting	service	or	component	from	any	instance	of	the	
distributed	data	storage.	

Validation	 Completed	 	Status	 	Fulfilled	
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RAINBOW’s	Secure	Overlay	Mesh,	as	its	name	says,	implements	an	overlay	networking	
protocol	that	dynamically	auto-configures	nodes,	regarding	the	acquired	IP	addresses,	
when	they	join	the	fog	cluster.	The	IPv6	of	each	fog	node	is	the	truncated	SHA512	hash	
of	the	public	key	which	is	used	for	spoofing	prevention	and	attestation	when	the	node	
connects	to	the	RAINBOW	network.	
	
The	 Distributed	 Data	 Storage	 and	 Sharing	 service	 is	 deployed	 along	 with	 the	
RAINBOW	stack	on	each	fog	node.	During	the	deployment,	the	IPv6	of	the	fog	node,	
which	is	generated	when	the	node	enters	RAINBOW’s	Secure	Overlay	Mesh,	is	used	as	
the	identifier	of	the	Storage	Agent.	Each	time	the	agent	ingests	new	monitoring	metrics	
from	the	Monitoring	Agent,	it	appends	its	identifier	to	the	key	of	each	metric	before	
storing	them.		
	
The	service	provides	a	REST	API	for	data	extraction	and	ingestion.	The	ingestion	of	
data	points	is	only	allowed	to	the	Monitoring	Agent	that	is	deployed	in	the	same	fog	
node	along	with	the	Storage	Agent	and	to	the	rest	of	the	storage	instances	in	the	cluster	
(when	data	are	replicated).		
	
Furthermore,	the	data	extraction	is	allowed	only	to	local	services	that	are	deployed	in	
the	 same	 fog	 node	 as	 the	 Storage	 Agent.	 Services	 on	 remote	 nodes,	 e.g.,	 Analytic	
Workers,	can	only	access	the	stored	data	using	the	IPv6	of	the	Storage	Agents.	If	the	
provided	 IPv6	 addresses	 are	 not	 correct	 the	 storage	 instances	will	 not	 return	 any	
results.	The	storage	instances	of	the	Ignite	cluster	can	also	access	the	data	from	remote	
nodes	using	 the	necessary	 IPv6	addresses	which	 can	be	accomplished	 through	 the	
internal	cluster	networking	protocol.	
	
Finally,	to	further	increase	the	security	during	data	exchange	and	sharing,	the	Secure	
Overlay	Mesh	does	not	allow	external	connections	to	the	services	of	the	cluster	nodes.	
This	means	that	Ignite	instances	from	outside	physical	machines	cannot	connect	to	the	
Distributed	Data	Storage	and	Sharing	service	even	if	it	has	one	of	the	addresses	of	the	
cluster	nodes.	

	
ID	 FR.DSS.5	

Title	 In-memory	cache	for	routing	tables	

Requirement	
Description	

The	Data	Storage	and	Sharing	service	must	provide	the	means	to	
temporarily	cache	the	routing	tables	for	the	secure	CJDNS	overlay	
network	protocol.	
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Validation	 Completed	 	Status	 	Fulfilled	

RAINBOW’s	Secure	Overlay	Mesh	implements	an	overlay	networking	protocol	that	is	
built	on	top	of	encrypted	P2P	routing	mechanisms.	Initially,	this	mechanism	relied	on	
CJDNS;	 yet	 the	 final	 implementation	 relied	 on	 a	 CJDNS18	 fork	 called	Yggdrasil19.	 In	
practice,	Yggdrasil	is	a	GOLANG	port	of	CJDNS	(developed	in	C++)	that	incorporates	
several	routing	optimizations.		
	
According	to	the	encrypted	P2P	protocol,	each	node	holds	a	local	cache	of	the	routing	
table	 that	 stores	 destinations	 that	 are	 either	 one	hop	destinations	 or	multiple-hop	
vectors	that	are	discovered	using	data	source	routing.	Each	path	(single-node	or	multi-
node)	has	a	limited	time	validity	since	nodes	can	alter	their	positions	dynamically.	The	
set	 of	 ‘volatile’	 vectors	 constitutes	 a	 data	 structure	 that	 acts	 as	 a	 cache	 for	 the	
Distributed	Data	Storage	and	Sharing	service.	
	
This	allows	the	provision	of	cluster-related	metadata	that	can	be	consumed	directly	
by	the	Distributed	Data	Processing	service	or/and	any	other	RAINBOW	component	
that	needs	it	to	derive	statistics	and	analytic	query	results.	The	cache	of	the	routing	
tables	 can	 be	 queried	 individually	 or	 as	 part	 of	 an	 analytics	 query.	 Thus,	 the	 data	
placement	and	all	micro-services	that	are	part	of	the	Data	Storage	service	also	affect	
the	local	copy	of	the	routing	table’s	data.	The	performance	evaluation	is	covered	by	
the	 experiments	 in	 FR.DSS.1	 and	 FR.DSS.3,	 as	 part	 of	 the	 service’s	 implemented	
techniques.	

	
ID	 FR.DSS.6	

Title	 Custom	schema	support	for	app-specific	data	storage	

Requirement	
Description	

The	Data	Storage	and	Sharing	service	must	provide	the	option	to	
temporarily	store	application-specific	data	from	the	application	
instances	that	run	on	the	control	plane.	

Validation	 Completed	 	Status	 	Fulfilled	

The	Distributed	Data	Storage	and	Sharing	service	is	not	limited	to	storing	monitoring	
metrics	 from	RAINBOW’s	Monitoring	Agents.	Other	RAINBOW	components	can	also	
use	 it	 to	store	data	 in	a	timeseries	 format.	Upon	startup,	 it	 initializes	and	creates	2	

	
18	https://github.com/cjdelisle/cjdns		
19	https://github.com/yggdrasil-network		
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additional	 caches,	 one	 purely	 in-memory	 and	 one	 for	 persistent	 storage,	 where	
timestamped	data	points	can	be	stored.		
	
The	Distributed	Data	Processing	service	from	the	RAINBOW	stack	along	with	other	
interested	services	can	use	the	REST	API	to	store	and	extract	data	from	the	2	caches.	
The	 services	 can	 choose	whether	 to	 use	 the	 temporary	 (in-memory)	 cache	 or	 the	
persistence-enabled	one,	depending	on	their	needs.		

	
ID	 FR.DSS.7	

Title	 Deployment	in	geo-distributed	realms	

Requirement	
Description	

The	Data	Storage	and	Sharing	service	must	be	able	to	function	
properly	in	a	geo-distributed	environment	with	heterogeneous	
networking	and	physical	machines.	

Validation	 Completed	 	Status	 	Fulfilled	

The	Distributed	Data	 Storage	 and	 Sharing	 service	 is	 built	 on	 top	 of	 Apache	 Ignite,	
which	 is	 inheritably	 suitable	 for	 deployment	 in	 heterogeneous	 ecosystems.	 It	 is	
packaged	 in	a	docker	container	and	deployed,	along	with	the	rest	of	 the	RAINBOW	
stack,	in	every	fog	node	of	the	cluster.	Each	service	instance	is	transparent	and	does	
not	 intrude	 in	 the	 operation	 of	 the	 rest	 of	 the	 services	 deployed	 in	 the	 fog	 nodes,	
limiting	its	resource	needs.	It	operates	under	the	serverless	paradigm	which	decreases	
the	network	needs	for	internal	communication	since	each	instance	can	directly	“talk”	
with	each	other	without	the	permission	of	a	leader	instance.	
	
Furthermore,	since	Ignite’s	mechanisms	for	data	movement	(replication/partitioning)	
are	 not	 tailored	 to	 dynamic	 fog	 environments,	 our	 service	 implements	 two	 novel	
techniques	that	take	into	account	the	nature	of	fog	ecosystems	as	well	as	the	network	
limitations.	 The	 first	 technique	 monitors	 the	 fog	 nodes	 and	 frequency	 of	 their	
failures/restarts	in	order	to	replicate	data	from	unstable	nodes	to	more	stable	ones.	
This	helps	prevent	data	loss	on	failures	since	the	failed	node’s	data	can	be	extracted	
from	the	replica	nodes.	
	
The	 second	 technique	 cooperates	 with	 the	 Distributed	 Data	 Processing	 service	 in	
order	to	minimize	the	data	movement	when	the	processing	service	queries	data	from	
the	storage	instances.	It	decides	on	data	placement	destinations	based	on	the	location	
of	the	processing	workers	as	well	as	the	network	latency	and	data	quality/freshness	
measures.	
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Combining	both	placement	techniques	along	with	the	distributed	nature	of	the	Ignite	
DBMS	and	the	implementation	choices	described	in	the	previous	sections,	makes	the	
Distributed	 Data	 Storage	 and	 Sharing	 service	 tailored	 for	 dynamic	 heterogeneous	
environments	comprising	of	resource-limited	fog	nodes.	

	

3.3 Documentation and Code Repository 

	
The	documentation	of	the	Distributed	Data	Storage	and	Sharing	service	can	be	found	in	
the	respective	section	of	the	RAINBOW	documentation	site:	
	

	
https://rainbow-h2020.eu/docs/getting-started/rainbow-distributed-data-storage/	

	
The	source	code	of	the	Distributed	Data	Storage	and	Sharing	service	is	open-source	and	
can	be	found,	along	with	the	documentation,	in	the	RAINBOW	source	code	repository:	
	

https://gitlab.com/rainbow-project1/rainbow-storage	
	

3.4 Novel aspects  

The	 Distributed	 Data	 Storage	 and	 Sharing	 service	 presents	 a	 novel	 solution	 for	 geo-
distributed	 fog	 environments	 that	 allows	 for	 consistent	 and	 fail-safe	 data	 storage	 of	
continuously	produced	monitoring	metrics.	 It	 leverages	 a	data-centered	based	NoSQL	
database	management	system	and	renders	it	suitable	for	the	fog	ecosystem	by	using	local	
ACID	transactions	for	data	ingestion	and	extraction	using	a	combination	of	main-memory	
and	 persistent	 data	 structure.	 It	 provides	 the	 Storage	 Fabric	which	 makes	 the	 data	
location	transparent	to	the	requesting	service	and	allows	for	secure	extraction	from	any	
Storage	Agent	in	the	cluster.	
	
Furthermore,	the	service	by-passes	the	build-in	traditional	replication	and	partitioning	
mechanisms,	 which	 try	 to	 place	 data	 to	 different	 instances	 in	 a	 balanced	 manner,	
unsuitable	 to	 fog	 ecosystems.	 It	 implements	 two	 novel	 data	 placement	 techniques	 to	
tackle	the	most	common	problems	encountered	in	such	ecosystems,	 i.e.,	node	stability	
and	data	movement	over	the	mesh	network.	
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4 Distributed Data Processing Service 

In	this	Section,	we	present	a	comprehensive	documentation	report	referring	to	the	final	
release	 of	 the	Distributed	Data	 Processing	 Service	 as	 part	 of	 the	 RAINBOW	Analytics	
Stack.	
	

4.1 Overview 

4.1.1 The RAINBOW Analytics Stack 

The	RAINBOW	Analytics	Stack	is	comprised	of	various	components	and	is	responsible	for	
the	RAINBOW	ecosystem’s	needs	for	data	stream	processing	so	that	real-time	analytic	
insights	can	be	extracted	from	the	vast	amounts	of	monitoring	data	collected	from	both	
the	underlying	fog	resources	and	performance	indicators	from	deployed	IoT	applications.	
To	this	end,	the	Analytics	Stack	provides	a	completely	distributed	solution,	with	the	data	
processing	performed	-in	place-	right	where	the	data	is	generated	so	that	analytic	insights	
are	 extracted	with	 low-latency,	 and	with	 the	 collected	 data	 never	 leaving	 the	 overlay	
mesh	network	interconnecting	the	collaborating	fog	nodes.		
	
For	RAINBOW,	Distributed	Stream	Processing	builds	upon	the	Apache	Storm20	ecosystem	
with	our	aim	being	to	not	implement	yet	another	distributed	data	processing	engine	but	
rather	 to	 design	 novel	 scheduling	 algorithms	 that	 are	 decoupled	 from	 the	 underlying	
engine	 and	 acknowledge	 the	 unique	 settings	 found	 in	 the	majority	 of	 geo-distributed	
environments	that	IoT	applications	are	deployed	in.	In	turn,	to	ease	the	rapid	design	of	
streaming	 analytic	 jobs,	 RAINBOW	 also	 attacks	 the	 analytic	 job	 programmability	
challenges.	 This	 is	 achieved	by	 introducing	 StreamSight,	 a	 framework	 that	 provides	 a	
query	 model	 enabling	 users	 to	 utilize	 a	 high-level	 descriptive	 language	 to	 “stich”	
monitoring	 streams	 together	and	 through	 the	application	of	 various	aggregations	and	
transformations	to	generate	streams	that	emit	analytic	insights.		
	
Figure	3	High-level	overview	of	the	components	of	RAINBOW's	Analytics	Stackdepicts	a	
high-level	 overview	of	 the	 components	 comprising	 the	RAINBOW	Analytics	 Stack	 and	
Figure	 4	 presents	 how	 these	 components	 interact	 with	 each	 other	 and	 with	 other	
RAINBOW	services.	A	typical	analytics	job	starts	from	the	Analytics	Editor	(1).	Through	
the	 Analytics	 Editor	 one	 can	 design	 queries	 by	 composing	 insights	 from	 various	
monitoring	metric	streams	and	through	the	application	of	various	operators	transform	
the	raw	streams	into	an	insight	stream.	

	
20	https://storm.apache.org/		
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Figure	3	High-level	overview	of	the	components	of	RAINBOW's	Analytics	Stack	

	
When	 all	 desired	 queries	 have	 been	 designed,	 the	 user	 submits	 the	 queries	 through	
Analytics	Editor	to	the	Analytics	Enabler	(2).	Analytics	Enabler	will	compile	the	queries	to	
the	respective	analytics	job,	ready	for	deployment.	Thus,	prior	to	deployment	the	queries	
pass	through	the	StreamSight	compiler	which	will	attempt	to	optimize	the	query	logical	
plan	so	that	the	job	is	better	facilitated	for	the	fog	continuum.	For	example,	less	operator	
shuffling	will	be	attempted,	and	intermediate	data	generated	will	be	reused	instead	of	re-
computed.		
	
After	the	job	optimization,	the	 job	is	compiled	into	its	 final	 form	and	is	shipped	to	the	
Analytics	Executor	(3).	The	role	of	this	component	is	to	coordinate	the	job	deployment	
and	facilitate	the	provisioning	of	the	execution	environment	on	the	fog	nodes	that	have	
been	denoted	as	nodes	that	will	host	Analytic	Workers	(4).	With	a	provisioned	execution	
environment	in	hand,	the	Analytics	Executor	invokes	the	respective	Analytics	Scheduler	
(5)	 from	 the	 RAINBOW	 Schedulers’	 Repository,	 which	will	 perform	 an	 analytics	 task	
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placement	algorithm	to	provide	near-to-optimal	efficiency	for	analytic	queries	based	on	
the	user-desired	optimization	polices.	Furthermore,	Analytics	Executor	interacts	with	the	
Resource	Manager	 (6)	of	 the	RAINBOW	Orchestrator	 to	 receive	 information	about	 the	
underlying	infrastructure	resources,	 like	available	CPUs,	memory,	network	bandwidth,	
while	data	placement	metadata	will	be	requested	from	the	Storage	Fabric	(7).	It	should	
be	mentioned	that,	in	a	real	deployment,	each	Storage	Agent	is	capable	of	providing	data	
locality	information.		
	
So,	in	Figure	3,	the	Storage	Fabric	represents	a	logical	sub-component	that	abstracts	and	
unifies	the	functionality	offered	by	inter-connected	local	Storage	Agents	by	providing	a	
decentralized	API	for	access	to	monitoring	data.	Hence,	monitoring	data	are	immediately	
made	 available	 through	 the	 RAINBOW	 secure	 overlay	 mesh	 network	 without	 data	
needing	to	be	moved	to	a	central	(cloud)	location	that	will	provide	data	access	but	with	
both	 a	 performance	penalty	 and	 costs	 incurred	 for	 data	movement.	With	 information	
about	 resource	 availability	 and	 storage	metadata,	 and	 the	RAINBOW-enabler	Analytic	
Scheduler,	the	Analytic	Executor	executes	the	job	at	runtime	and	supervises	its	execution,	
updates	the	job	scheduling,	by	following	the	invoked	scheduler,	and	stores	the	generated	
results	back	to	Storage	Fabric.	Finally,	RAINBOW	Unified	Dashboard	retrieves	the	results	
from	Storage	Fabric	(8)	and	displays	them	to	the	end	user	(9).	
	
The	 following	 sequence	 diagram	 of	 Figure	 4	 depicts	 more	 formally	 the	 interactions	
among	 the	 RAINBOW's	 components	 and	 the	 components	 of	 the	 Analytics’	 stack.	 The	
service	operator	edits	a	set	of	Analytic	Queries,	written	with	StreamSight	query	language,	
and	 submits	 them	 through	 the	Analytic	 Editor	 to	 the	Analytics	 Enabler.	We	note	 that	
StreamSight	 and	 its	 query	 model	 will	 be	 discussed	 in	 Chapter	 5,	 with	 this	 Chapter	
focusing	 on	 Distributed	 Stream	 Processing.	 The	 Analytics	 Enabler,	 as	 we	 described	
before,	optimizes	the	submitted	queries	and	generates	an	executable	streaming	artifact.	
The	artifact	is	submitted	to	the	Analytic	Executor,	and	the	executor	invokes	the	respective	
RAINBOW-enabled	Scheduler,	requests	resources	from	the	Resource	Manager,	retrieves	
data	placement	metadata	from	the	Storage	Fabric,	and	calculates	the	placement	of	 the	
required	 tasks.	 Then,	 it	 assigns	 the	 tasks	 to	 the	 Analytics	Workers,	 and	 the	 workers	
execute,	 store	 the	 results,	 and	 periodically	 disseminate	 heartbeat	 responses	 to	 the	
Analytics	Executor.	When	the	executor	has	assigned	all	the	tasks,	informs	the	Analytics	
Enabler,	and,	consequently,	the	enabler	informs	the	user	through	the	dashboard.	Finally,	
the	 user	 requests	 the	 computed	 results	 through	 the	 dashboard,	 and	 the	 dashboard	
retrieves	them	via	API	call	on	Storage	Fabric.	
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Figure	4	Sequence	Diagram	of	RAINBOW	Analytics	Stack	

	

4.1.2 Distributed Stream Processing – Enhancing the Apache Storm Ecosystem 

Prior	to	introducing	how	components	of	the	RAINBOW	Analytics	Stack	fit	and	interact	
with	the	Apache	Storm	ecosystem,	a	brief	overview	of	the	terminology	and	how	stream	
processing	is	achieved	by	Storm	is	provided.	A	Storm	cluster	is	comprised	(architecture-
wise)	 of	 two	 basic	 components:	 a	 Leader	 node,	 denoted	 with	 the	 name	Nimbus,	 and	
Worker	nodes,	which	are	denoted	as	Supervisors.	Nimbus,	quite	similar	to	the	JobTracker	
in	 a	 MapReduce	 cluster	 (e.g.,	 Hadoop),	 is	 the	 entity	 responsible	 for	 the	 analytics	 job	
coordination	that	includes	the	scheduling	of	analytic	tasks	to	Supervisors	and	the	overall	
overview	of	the	cluster	lifecycle	management	(e.g.,	handling	failures).	In	turn,	Supervisors	
are	the	nodes	that	accept	analytic	tasks	from	Nimbus	and	coordinate	their	execution	on	
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the	local	environment	they	have	access	to.	For	RAINBOW	this	environment	is	the	fog	node	
where	 the	 Supervisor	 is	 deployed	 on.	 Hence,	 the	 Supervisors	 are	 the	 actual	
implementation	of	the	Analytics	Workers	that	the	RAINBOW	Mesh	Stack	features.	In	turn,	
Nimbus	is	one	of	the	main	software	components	comprising	the	Analytics	Executor.	It	is	
worth	mentioning	that	a	third	component	is	also	required	for	the	successful	deployment	
of	a	Storm	cluster,	although	not	considered	part	of	Storm	per	se.	This	third	component	is	
ZooKeeper21,	which	handles	the	cluster	communication	overlay	between	Nimbus	and	the	
Supervisor	 nodes	 along	 with	 some	 additional	 functionality	 including	 worker	 health	
monitoring.		
	
A	high-level	overview	of	how	components	of	the	RAINBOW	Analytics	Stack	fit	within	the	
Apache	Storm	ecosystem	is	showcased	in	Figure	5.	Specifically,	the	Analytics	Executor	is	
responsible	for	coordinating	the	execution	of	streaming	analytic	jobs	on	the	application’s	
fog	nodes	that	feature	a	deployed	Analytics	Worker.		
	

	
Figure	5:	RAINBOW	Analytics	Stack	Components	within	Storm	Ecosystem	

	
As	input,	the	Analytics	Executor	accepts:	(i)	the	artifacts	of	the	analytics	job,	this	is	jar	file	
of	the	Storm	job,	and	although	in	Chapter	5	the	jar	file	can	include	a	set	of	optimization	
performed	by	the	RAINBOW	StreamSight	compiler,	this	can	be	a	vanilla	Storm	job;	(ii)	the	
optimization	strategy	that	the	user	desires	for	the	deployed	job.	This	may	be	left	to	the	
default	fog-agnostic	Storm	scheduling	or	may	be	a	request	to	optimize	for	performance	

	
21	https://zookeeper.apache.org/		
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(reduce	streaming	 latency)	or	may	be	a	 request	 to	explore	a	 trade-off	 either	between	
performance	 and	 data	 quality	 or	 performance	 and	 energy	 consumption.	More	 on	 the	
scheduling	optimization	is	showcased	in	the	following	section;	and	(iii)	the	application	
Service	 Graph	 (SG).	 The	 SG	 is	 utilized	 by	 the	 scheduling	 algorithms	 to	 have	 an	
understanding	of	 the	underlying	execution	environment	so	 that	 the	placement	 is	both	
resource	and	topology-aware.	For	example,	when	optimizing	for	performance,	one	must	
know	 the	 resource	 availability	 of	 the	 underlying	 heterogeneous	 fog	 nodes	 and	when	
exploring	 a	 trade-off	 between	 performance	 and	 energy	 consumption,	 one	 must	
additionally	 know	 the	 power	 states	 available	 by	 the	 underlying	 fog	 node	 (e.g.,	 for	 a	
Raspberry	Pi	these	are	𝑃%4&) = 4𝑊	and	𝑃$56%7) = 8𝑊).	
	

4.1.3 Streaming Job Scheduling 

Stream-processing	 systems	 are	 unique	 and	 present	 different	 challenges	 than	 those	
related	 to	 tuning	 databases	 and	 batch-processing	 systems.	 First,	 stream-processing	
applications	are	long-running	(potentially	infinite)	programs.	Tuning	such	applications	
requires	determining	an	experiment’s	duration	 such	 that	 it	 is	 long	enough	 to	provide	
accurate	 performance	 measurements	 of	 a	 configuration	 yet	 short	 enough	 to	 quickly	
converge.	Second,	there	are	generally	two	metrics	of	interest	that	can	be	optimized	for	
performance;	 throughput	 and	 latency.	 Extending	 the	metrics	 of	 interest	 increases	 the	
problem	dimensionality	 and	 therefore,	 tuning	becomes	 a	multi-objective	optimization	
challenge.		
	
In	Storm,	an	analytics	query	is	described	as	a	Topology,	namely	the	input	data	structure	
received	by	the	Storm	cluster	for	continuous	execution	and	analytics	insight	extraction.	
Note	 that	 an	 analytics	 job	 may	 contain	 multiple	 queries	 and	 therefore,	 multiple	
Topologies.	 In	 its	most	 simplistic	 form,	 a	Topology	 is	 a	Directed	Acyclic	 Graph	 (DAG)	
comprised	of	multiple	nodes	that	can	take	one	of	two	forms.	Specifically,	nodes	can	be	
Spouts	or	Bolts,	as	shown	in	Figure	6.		
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Figure	6:	Decomposed	Storm	Topology	

A	Spout	node	 is	 linked	to	a	data	source	and	 is	 in	charge	of	handling	data	 ingestion	by	
receiving	data	as	a	stream	of	tuples	and	delegating	these	tuples	to	respective	Bolts,	based	
on	the	configured	Topology.	Examples	of	data	sources	are	various	DBMSs,	distributed	file-
systems	and	even	high-performance	queueing	services.	To	 improve	the	data	 ingestion	
process	and	support	dynamic	changes	of	the	underlying	environment	(i.e.,	add/remove	
fog	nodes),	we	have	designed	and	developed	a	Spout	node	capable	of	ingesting	streaming	
data	 from	 the	 Storage	 Fabric	 interconnecting	 the	 Storage	 instances	 deployed	 over	 an	
application’s	fog	nodes.		
	
Through	 the	 Spout	we	 have	 created,	 access	 to	 the	 Storage	 Fabric	 is	 provided	 so	 that	
monitoring	data	relevant	to	the	deployed	analytic	queries	can	be	accessed.	Specifically,	
via	the	Spout,	monitoring	data	can	be	extracted	in	two	modes:	either	through	a	per	metric	
request,	where	 a	 specific	metric	 is	 requested	 via	 its	metric	 id	 or	 through	 a	per	entity	
request,	where	all	the	metrics	relevant	to	a	monitored	entity	are	requested.	In	the	latter	
case,	an	entity	can	be	a	 fog	node	or	a	containerized	execution	environment.	With	 this	
approach	a	node	global	address	scheme	for	data	ingestion	is	not	required.	Searching	for	
where	data	is	stored	is	not	a	job	performed	by	the	distributed	stream	engine	but	rather	
requests	 are	 delegated	 to	 the	 Storage	 Fabric	 which,	 in	 turn,	 performs	 this	 operation	
efficiently	as	it	maintains	a	global	indexing	scheme	for	monitoring	data.		
	
Bolts	on	the	other	hand,	are	the	nodes	performing	the	actual	data	processing	and	can	be	
implemented	 to	 perform	 data	 aggregations,	 groupings,	 filtering	 and	 even	 data	
transformations.	It	is	worth	noting	that	a	Bolt	may	consume	data	from	multiple	streams	
and,	in	turn,	generate	multiple	streams	that	are	further	connected	to	other	downstream	
Bolts.	
	
One	 of	 the	most	 important	 factors	 that	 lead	 to	 the	 selection	 of	 Apache	 Storm	 as	 the	
underlying	stream	processing	engine	for	RAINBOW	is	the	ease	it	provides	when	there	is	
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a	need	to	customize	the	assignment	of	analytic	tasks	to	worker	nodes.	More	specifically,	
one	can	actuate	a	custom	scheduler	by	 implementing	the	IScheduler	 interface,	and	
without	 the	 need	 to	 resort	 to	 source	 code	 refactoring.	 With	 this	 functionality	 the	
scheduling	decisions	of	the	optimization	algorithms	are	enforced	into	the	use-cases.	In	
Particular,	 when	 instantiating	 Nimbus,	 users	 as	 allowed	 to	 give	 as	 input	 a	 Scheduler	
implementation	that	adheres	to	the	IScheduler	 interface	so	that	DAG	operators	are	
placed	 on	worker	 nodes	 based	 on	 an	 algorithm	 that	 deviates	 from	 the	 default	 Storm	
Scheduler.	These	operators	are	the	Spout	and	Bolt	nodes	of	a	Storm	Topology.		
	
Figure	 7	 depicts	 the	 IScheduler	 interface	 (v2.3.x).	 The	 IScheduler	 interface	
contains	 two	 important	methods	 for	 implementation.	 Specifically,	 the	prepare(Map 
config, StormMetricsRegistry metrics)	method	is	called	upon	(at	least)	once	
and	provides	initial	cluster	configuration	information	that	may	be	useful	for	the	custom	
scheduler	implementation.	Such	information	includes	the	worker	nodes,	utilization	data,	
etc.	 In	 turn,	 the	 schedule(Topologies topologies, Cluster cluster)	
method	is	the	method	that	actually	performs	the	scheduling	processing	and	therefore,	
allocating	DAG	operators	(segments	of	the	Storm	Topology)	to	Supervisors.	The	input	to	
the	scheduling	process	is	the	topologies/queries	that	must	be	decomposed	into	segments	
and	 assigned	 to	 supervisors,	 along	 with	 the	 cluster	 object	 capturing	 in	 a	 list	 all	 the	
available	Supervisors	that	can	process	tasks	on	the	cluster.		
	

	
Figure	7:	Storm	IScheduler	Interface	(v2.3.x)	

Note	that	in	a	static	configuration	of	the	underlying	infrastructure	or	in	a	homogeneous	
worker	node	cluster,	the	scheduling	process	only	needs	to	run	once	as	no	changes	are	
foreseen	to	the	deployment.	However,	this	is	far	from	the	case	in	a	highly	dynamic	fog	
continuum	with	 heterogeneous	 fog	 nodes	 that	 are	 dynamically	 (de-)	 provisioned	 and	
hence,	 the	 prepare(…)	 method	 is	 actually	 called	 upon	 each	 time	 the	 scheduling	 is	
updated.	 Hence,	 to	 support	 the	 periodic	 update	 of	 the	 storm	 scheduling	 process,	 all	
custom	 schedulers	 designed	 by	 RAINBOW	 include	 in	 the	 prepare(…)	 method	 the	
following	data	that	is	extracted	from	the	Storage	Fabric	and	the	Orchestrator’s	Resource	
Manager:	 (i)	 the	 IoT	 application’s	 service	 graph;	 (ii)	 the	 fog	 nodes	 in	 the	 current	
cluster	along	with	their	current	resource	capabilities	(i.e.,	cpu-speed,	power	levels);	
and	(iii)	up-to-date	monitoring	data	for	the	fog	nodes	along	with	network	statistics	that	
include	link	quality	and	latency.	
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The	RAINBOW	Analytics	Stack	features	4	implementations	of	Storm	Schedulers.	The	first	
Scheduler	 is	 dubbed	 as	 the	 “BaselineScheduler”,	 as	 it	 essentially	 performs	 fog-
agnostic	optimization	by	adopting	the	default	Storm	Scheduler.	As	explained	in	Section	
2.2,	 the	default	 Storm	Scheduler	 adopts	 a	 “fairness”	policy	where	 tasks	 are	placed	on	
worker	nodes	in	a	(pseudo-)	round-robin	fashion.	This	Scheduler	is	extended	to	accept	
cluster	 information	 in	 the	 form	 of	 a	 RAINBOW	 Service	 Graph	 and	 monitoring	 data	
accessed	through	the	RAINBOW	Storage	Fabric.	This	Scheduler	is	available	from	the	first	
RAINBOW	 Platform	 release	 and	 in	 second	 year	 of	 the	 project	 (Y2)	 was	 updated	 to	
incorporate	the	new	updates	made	to	the	Service	Graph	model	(D3.2).	
	
The	second	RAINBOW	Scheduler	is	designed	to	acknowledge	both	resource	and	network	
heterogeneity.	 For	 (reference)	 simplicity	 this	 scheduler	 is	 dubbed	 as	 the	
“PerfScheduler”,	as	it	inherently	optimizes	the	performance	of	the	stream	processing	
by	 considering	 as	 the	 most	 important	 QoS	 metric	 the	 average	 latency	 of	 the	 Storm	
Topology.	As	explained	in	D4.1,	the	average	latency	is	defined	as	the	latency	measured	
from	the	slowest	path	in	the	DAG	(from	data	source	to	sink	node)	with	regards	to	a	single	
input	 data	 batch	 and	 consists	 of	 the	 average	 communication	 latency	 between	 the	
operators	 in	 the	 path.	 The	 batch	 size	 is	 configurable	 and	 depends	 on	 the	 scheduling	
periodicity.	In	turn,	the	aforementioned	slowest	path	is	denoted	as	the	critical	path	and	
for	 fog	 deployments	 extending	 to	 geo-distributed	 realms	 (just	 like	 all	 RAINBOW	
Demonstrators)	 the	communication	overhead	 is	 the	dominating	 factor	contributing	 to	
the	total	stream	processing	performance.	This	is	justified,	as	the	execution	latency	of	each	
operator	(bolt)	is	considered	negligible	when	the	operators	receive	sufficient	resources	
for	execution.	
	
The	PerfScheduler	capitalizes	and	extends	research	from	AUTH/UCY	[17],	where	an	
algorithmic	 process	 is	 designed	 to	 model	 and	 solve	 the	 Storm	 operator	 placement	
problem	as	a	constraint	satisfaction	problem.	In	brief,	the	constraint	satisfaction	process	
attempts	to	process	an	operator	mapping	to	Analytic	Worker	nodes,	in	which	the	latency	
of	the	critical	path	is	minimized	while	ensuring,	at	the	same	time,	that	the	compute	and	
memory	capabilities	of	an	operator	 can	be	 fulfilled	by	 the	candidate	Worker	nodes	 in	
terms	of	CPU	cores,	speed	and	available	RAM.	However,	leaving	the	modeled	placement	
problem	as-is	is	not	a	realistic	option	as	the	defined	problem	is	NP-hard.	To	tackle	the	
high	complexity	and	make	the	scheduling	ideal	for	stream	processing,	we	adopt	two	low	
computational	 heuristics	 that	when	 combined	 together	 form	 the	 final	 hybrid	 efficient	
scheduling	 solution.	 First,	 the	 scheduling	 solves	 a	 relaxed	 version	 of	 the	 Non-Linear	
Programming	Formula	for	each	operator	considering	the	placement	of	its	parent	nodes	
and	then	further	optimize	it	heuristically.	Nonetheless,	the	previous	solution	may	employ	
numerous	Workers	unnecessarily	and	easily	fall	into	local	optima.	Thus,	we	additionally	
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use	a	spring	relaxation	algorithm	that	produces	a	solution	with	low	or	no	intra-operator	
parallelism	 that	 in	 the	 end,	 outputs	 a	 close	 to	 the	 optimal	 placement	 with	 linear	
complexity.	 Finally,	 we	 note	 that	 this	 Scheduler	 is	 available	 from	 the	 first	 RAINBOW	
Platform	 release	 and	 in	Y2	was	updated	 to	 incorporate	 the	new	updates	made	 to	 the	
Service	Graph	model	 (D3.2),	while	a	number	of	minor	bug	 fixes	were	performed	after	
being	pinpointed	through	the	both	the	RAINBOW	testing	process	and	the	Demonstrators.	
	

4.1.4 New RAINBOW-Enabled Schedulers for Apache Storm 

This	Section	introduces	the	two	new	custom	Schedulers	designed	and	implemented	for	
Storm	engines	deployed	in	fog	realms.	Examples	of	how	the	previous	and	new	RAINBOW	
Schedulers	work	are	shown	in	Section	4.3	(Requirements	Fulfillment).	
	

4.1.4.1 PerfDQScheduler: exploring trade-off between performance and data quality 

The	third	RAINBOW	Scheduler	is	designed	with	the	intent	to	optimize	the	placement	of	
Storm	operators	 to	Analytic	Worker	nodes	by	 considering	data	quality	 as	 a	 first-class	
citizen	with	a	bi-objective	optimization	process	considering	both	performance	and	data	
quality.	This	Scheduler	extends	the	PerfScheduler	and	for	(reference)	simplicity	 is	
dubbed	 as	 the	 “PerfDQScheduler”.	 Data	 quality	 is	 an	 important	 aspect	 for	 IoT	
applications.	Low	quality	can	lead	to	less	useful	results	as	analytic	insights	are	produced	
with	high	uncertainty	that	may	impact	mission-critical	tasks	(i.e.,	pedestrian	detection	for	
self-piloting	 cars/drones).	 The	 quality	 of	 data	 can	 be	 categorized	 into	 multiple	
dimensions.	Some	examples	of	these	are	completeness,	timeliness	and	accuracy.	Some	of	
the	most	common	factors	that	lead	to	decreased	data	quality	include	the	heterogeneity	of	
data	sources,	missing	and	dirty	data	due	to	network	malfunctions	or	security	constraints.	
Data	quality	at	a	first	glance,	may	not	seem	as	a	significant	overhead,	but	the	reality	is	far	
from	it	when	faced	with	a	resource-constraint	environment	and	scenarios	with	high	data	
inter-arrival	rates.	
	
Towards	 this,	 the	design	of	 the	PerfDQScheduler	 is	motivated	by	 the	 fact	 that	 the	
more	the	quality	checks,	the	less	an	Analytics	Worker	on	a	fog	node	can	be	assigned	tasks	
of	 upstream	 operators,	 thus	 inducing	 higher	 communication	 cost	 (i.e.,	 more	 workers	
required),	which	 is	a	direct	contradiction	to	 the	performance	optimization.	Hence,	 the	
PerfDQScheduler	 algorithmic	 design	 attempts	 to	 optimize	 the	 level	 at	which	 data	
quality	checks	are	performed	considering	the	computational	and	memory	overhead	they	
impose.	As	 such,	 the	 scheduling	process	 limits	 the	 fraction	of	 the	data	 for	which	data	
quality	checks	are	performed	in	a	systematic	manner	and	regardless	of	what	exactly	these	
checks	are,	with	the	aim	being	to	extend	quality	checks	as	much	as	possible	but	without	
contributing	to	the	increase	of	the	communication	latency.		
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Now,	 since	 the	 communication	 latency	 is	 the	 dominating	 inhibitor	 in	 data	 stream	
processing,	the	data	quality	checks	take	a	share	of	the	worker	node	computational	(and	
memory)	resources	and	this	share	is	“just	enough”	to	not	require	additional	workers	or	
an	 increase	 in	 data	 shuffling.	 To	 achieve	 this,	 the	 algorithmic	 process	 extends	 the	
PerfScheduler with	the	data	quality	problem	dimension.	This	includes	adding	the	
data	 quality	 check(s)	 resource	 requirements	 to the	 constraint	 satisfaction	 process,	
which	are	only	realized	after	an	initial	learning	phase	of	which	these	requirements	are	
profiled	through	compute	and	memory	data	provided	by	the	RAINBOW	Monitoring.	As	a	
final	note,	 although	another	 constraint	 is	added	 to	 the	constraint	 satisfaction	process,	
thanks	to	the	novel	hybrid	process	adopted	in	the	algorithmic	process	(linear	programing	
with	 heuristics,	 spring	 relaxation),	 the	 computation	 complexity	 does	 not	 actually	
increase.		

4.1.4.2 PerfEnergyScheduler: exploring trade-off between performance and energy-
consumption 

On	a	similar	note,	the	fourth	RAINBOW	Scheduler,	dubbed	“PerfEnergyScheduler”,	
is	 designed	with	 the	 intent	 to	 optimize	 the	 placement	 of	 Storm	operators	 to	Analytic	
Worker	nodes	via	a	bi-objective	optimization	process	considering	both	performance	and	
the	 topology	 energy-consumption.	 Energy-awareness,	 and	 subsequently	 green	
computing,	 is	 an	 important	 aspect	 for	 fog	 computing,	 especially	 when	 fog	 nodes	 are	
battery-powered.	The	intent	of	this	scheduler	is	that	in	a	heterogeneous	fog	environment,	
fog	nodes	may	present	not	only	different	resource	and	network	capacity	but	also	different	
power	levels.	The	latter	is	particularly	important	as	many	nodes	may	be	“selectable”	for	
the	placement	of	a	Storm	operator	in	terms	of	their	computational/memory	capabilities.	
However,	if	they	feature	different	power	levels	(𝐸 = 𝑃 ⋅ 𝑡)	then	the	energy	consumption	
contributed	 to	performing	 the	analytic	 task	will	 incur	a	higher	energy	 footprint	 if	 the	
more	power-hungry	nodes	are	selected.	To	give	an	example,	a	Raspberry	Pi	4	model	B	
presents	a	𝑃%4&) 		of	4𝑊	and	𝑃$56%7) 	of		8𝑊,	while	the	power	of	an	Nvidia	Jetson	Nano	may	
range	from	32-56W.	If	an	operator	can	satisfactorily	run	on	the	Raspberry	Pi,	then	there	
will	be	significant	energy	savings.	Moreover,	the	problem	can	become	even	worse	if	the	
topology	is	battery-powered,	as	the	selection	of	the	power-hungry	nodes,	instead	of	the	
equivalent	energy-saving	nodes,	can	severely	impact	an	analytic	job	in	the	near	future	as	
the	power-hungry	nodes	may	be	deemed	unavailable,	when	needed,	very	early	on	due	to	
battery	exhaustion.	
	
Towards	 this,	 the	 PerfEnergyScheduler	 algorithmic	 design	 capitalizes	 on	 the	
PerfScheduler.	Specifically,	the	resource	list	of	a	fog	node	is	extended	to	include,	other	
than	computational	and	memory	profile,	a	power	profiling	that	features	the	node’s	power	
levels	(given	as	a	distinct	list	or	range)	and	if	the	node	is	battery-powered.	Just	like	with	
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the	PerfDQScheduler,	if	power	related	information	is	not	annotated	on	a	fog	node	in	
the	service	graph,	then	the	realization	of	the	energy-aware	scheduling	will	only	kick-in	
after	an	initial	learning	phase	of	which	these	requirements	are	profiled.		
	
In	 terms	 of	 profiling,	 a	 linear	 regression	 energy	 model	 is	 constructed	 to	 assess	 the	
computational,	I/O	and	network	energy	consumption	contribution.	As	such,	during	the	
operator	to	fog	node	mapping,	the	compute	and	memory	constraints	are	first	satisfied	
and	then	the	nodes	that	satisfy	the	requirements	are	sorted	based	on	their	power	profile	
and	the	least	power-hungry	nodes	are	selected.	At	the	end,	by	selecting	the	energy-saving	
nodes	 some	 share	 of	 communication	 latency	 is	 traded	 for	 achieving	 overall	 energy	
savings	as	the	number	of	nodes	required	in	the	stream	processing	may	be	more.		
	
As	a	final	note,	this	scheduler	features	and	additional	weighting	parameter,	denoted	as	
𝑤 ∈ [0,1],	that	enables	the	user	to	configure	how	energy	saving	the	algorithm	placement	
should	be	so	that	latency	is	not	hampered	beyond	expectations.	A	𝑤 = 0	denotes	that	the	
algorithm	 is	 not	 actually	 energy-aware	 and	 resorts	 to	 a	 pure	 resource-aware	
implementation	 (PerfScheduler),	 a	𝑤 = 1	 denotes	 that	 the	 algorithm	 is	 fully	 energy-
aware,	while	a	value	in	between	applies	the	weighting	process	in	the	operator-to-node	
mapping	process.	
	

4.2 Additional Functionality and Improvements 

This	subsection	introduces	additional	functionality	that	has	been	added	to	the	RAINBOW	
Analytics	 stack	 and	 is	 relevant	 to	 distributed	 data	 processing.	We	 note	 that	 the	 two	
Schedulers	 for	 Storm	 that	 have	been	 introduced	 in	 the	previous	 section	 are	 also	new	
functionality,	however,	to	provide	a	more	structured	reading	experience	for	Storm	and	
the	scheduling	process,	these	have	been	included	in	the	aforementioned	section.	
	

4.2.1 The Fogify Emulator 

A	plethora	of	challenges	inhibits	the	ease	of	experimentation	and	testing	of	edge	and	fog	
deployments	 that	 deluges	 our	 ability	 to	 understand	 the	 performance	 inefficiencies	 of	
these	 deployments,	 while	 also	 evaluating	 the	 efficacy	 and	 efficiency	 of	 scheduling	
algorithms	designed	to	optimize	analytic	job	placement.	In	order	to	perform	large-scale	
experimentation,	one	requires	a	significant	investment	for	physical	fog	devices,	but	even	
with	 this,	 configuring	 and	 setting	 up	 experiments	 with	 heterogeneous	 resources,	
networking	 and	 performing	 this	 at	 a	 geo-scale	 is	 a	 slow	 process.	 The	 difficulty	 in	
experimentation	increases	even	more	if	entities	can	be	mobile	and	if	certain	tests	must	
be	made	under	extreme	conditions,	 including	device	failures,	 link	drops	and	workload	
variations.	To	overcome	these	challenges	and	facilitate	the	rapid	design	of	experiment	
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testbeds	for	large-scale	data-intensive	IoT	applications,	we	have	created	an	emulator	as	
part	of	the	RAINBOW	Analytics	Stack.		
	

	
Figure	8:	High-Level	Overview	and	Logical	Interplay	of	the	Fogify	Emulator	for	Data-Intensive	IoT	Applications	

The	Fogify	emulator22	enables	RAINBOW	users	to	(i)	design	large-scale	fog	testbeds	using	
modeling	 abstractions	 to	 configure	 fog	 nodes	 and	 networks,	 (ii)	 deploy	 the	 emulated	
infrastructure	on	a	user’s	laptop	or	a	computer	cluster	for	large-scale	experiments,	and	
(iii)	rapidly	define	reproducible	experiments	and	“what-if”	scenarios.	To	use	Fogify,	no	
changes	are	required	to	the	business	logic	of	a	containerized	IoT	application,	with	users	
only	extending	their	Docker	Compose	description	with	Fogify	primitives	to	describe	the	
desired	 emulated	 testbed	 (where	 the	 app	 “sits”	 on).	 Specifically,	 users	 can	 annotate	
application	services	with	infrastructure	requirements	(i.e.,	cores,	clock	speed,	memory,	
disk)	and	configure	network	connectivity	between	infrastructure	offerings	(i.e.,	uplink,	
downlink,	 packet	 drops,	 bandwidth).	 Upon	 executing	 an	 experiment,	 the	 Fogify	
Controller	will	provision	the	emulated	testbed	and	during	runtime,	collect	a	plethora	of	
monitoring	 data	 that	 can	 be	 used	 to	 profile	 the	 deployment	 and	 assess	 desired	 KPIs.	
During	runtime,	Fogify	can	execute	ad-hoc	“one-off”	actions	or	an	entire	script	of	actions	
with	these	including	horizontal/vertical	scaling	actions,	workload	fluctuations,	link	drops	
and/or	quality	variations	and	node	failures.	With	such	actions,	one	can	realistically	assess	
the	efficacy	and	efficiency	of	a	deployment.		

	
22	https://ucy-linc-lab.github.io/fogify/		
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It	is	important	to	note	that	with	Fogify	the	application	services	are	actually	run	(wall	clock	
time)	and	produce	data,	with	only	the	fog	infrastructure	emulated	by	shaping	the	isolated	
containerized	runtimes	accordingly.	To	achieve	this,	two	key	novelties	are	embedded	in	
the	Fogify	Controller	[39].		
	
Although,	containerized	runtimes	offer	resource	isolation	through	linux	namespaces	and	
resource	constraining	through	cgroups,	mapping	emulation	requirements	 for	compute	
resources	is	not	straightforward	like	memory	(e.g.,	2GB	emulated	node	mapped	to	2GB	
container	 “sliced”	 from	 larger	 host).	 Hence,	 to	 enforce	 compute	 limits	 (aka	 “cpu-
capping”),	and	get	a	CPU	@	1.7GHz	on	a	16	core	@2.3GHz	host,	Fogify	has	contributed	to	
the	extension	of	linux	container	CPU	cgroup	with	the	ability	to	set	a	proportion	of	the	host	
CPU	allocated	to	emulated	node.	This	is	achieved	with	the	introduction	of	a	new	metric	
denoted	as	the	Cumulative	Clock	Rate	(CCR)	and	equal	to	the	number	of	cores	multiplied	
by	the	CPU	clock	speed.	With	this,	the	CPU	rate	can	be	configured	to	𝑛𝑜𝑑 𝑒008 ℎ𝑜𝑠⁄ 𝑡008 	.	
The	 second	 key	 novelty	 of	 Fogify	 is	 the	 provisioning	 of	 the	 network	 fabric	 for	 the	
emulated	testbed.	In	brief,	Fogify	builds	upon	the	RAINBOW	networking	logic	where	an	
overlay	mesh	network	 is	deployed	per	 topology	(VXLAN)	and	a	side-car	proxy	sits	on	
every	node.	The	proxy	separates	in-out	traffic	and	builds	a	tree-like	structure	by	utilizing	
Classful	Queuing	Disciplines	(qdisc)	to	support	network	rule	chaining	and	traffic	filtering	
which	act	as	QoS	queues.	
	

4.2.2 The 5G-Slicer Network Plugin 

While	 Fogify	 can	 create	 realistic	 emulation	 experiment	 testbeds,	 it	 makes	 one	 key	
assumption;	 it	 considers	 that	 the	 emulated	 infrastructure	 is	 fixed	 in	 position.	 	 To	
overcome	this	limitation,	the	RAINBOW	Analytics	Stack	employs	a	Fogify	plugin,	denoted	
as	 5G-Slicer	 [40].	 This	 plugin	 enables	 fog	 infrastructure	with	 computing	 and	 analytic	
capabilities	 to	 present	 mobility.	 Therefore,	 with	 5G-Slicer,	 the	 relevant	 modeling	
abstractions	 are	 provided	 for	 mobile	 entities,	 trajectory	 updating	 and	 mobile	
connectivity.	 In	 turn,	 when	 mobility	 is	 involved	 in	 computations,	 the	 network	
connectivity	varies	and	therefore,	5G-Slicer	enhances	the	Fogify	network	overlay	so	as	to	
update	 signal	 strength	 based	 on	 various	 distance-based	 models	 and	 5G	 connectivity	
protocols	 including	 massive	 MIMO	 (Multiple-Input Multiple-Output)	 and	 antenna	
beamforming.	
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Figure	9:	5G-Slicer	Network	and	Mobility	Modeling	Plug-in	for	the	Fogify	Emulator	

4.3 Requirements Fulfillment 

This	 Section	 provides	 a	 report	 on	 the	 fulfillment	 of	 the	 requirements	 list	 of	 the	
Distributed	Data	Processing	service	as	documented	in	D4.1.	
	
To	avoid	repetition,	we	note	 that	all	experiments	conducted	 in	 this	Section	have	been	
conducted	via	the	Fogify	emulator	(except	FR.DPS.3)	and	the	experiment	descriptions	are	
openly	available	and	can	be	reproduced.	Requirement	FR.DPS.3	is	showcased	through	a	
real	deployment	so	that	the	energy-aware	scheduling	is	fed	with	real	data	for	the	worker	
nodes’	power	consumption.	
	
ID	 FR.DPS.1	

Title	 Execute	analytic	tasks	over	heterogeneous	fog	nodes	

Requirement	
Description	

The	RAINBOW	Distributed	Data	Processing	Service	must	provide	
the	means	for	its	Analytic	Workers	to	execute	analytic	tasks	in	place	
and	over	heterogeneous	fog	nodes.	This	means	that	fog	nodes	may	
be	configured	with	a	wide	range	of	resource	capabilities,	while	the	
configuration	 of	 the	 Analytics	 Workers	 must	 be	 done	 with	 full	
transparency	and	no	additional	effort	from	RAINBOW	users	(zero-
conf).	

Validation	 Completed	 	Status	 	Fulfilled	
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The	 Distributed	 Data	 Processing	 Service’s	 Analytics	 Workers	 adopt	 the	 vanilla	
implementation	of	Apache	Storm	Supervisors	(v2.3.x	–	to	date	latest	stable	version).	
The	Workers	(Storm	Supervisors)	have	been	packaged	and	configured	as	deployable	
Docker	containerized	services	so	that	the	deployment	of	an	Analytics	Worker	can	be	
performed	by	the	RAINBOW	Orchestrator	on	requested	Fog	Nodes	that	meet	Storm	
Supervisor	minimum	system	requirements	(2	vCPU,	2GB	RAM).	Storm	Supervisors	are	
inherently	deployable	on	heterogeneous	host	environments,	however	the	scheduling	
of	analytics	jobs,	by	the	default	Storm	Scheduler,	does	not	acknowledge	the	underlying	
heterogeneity	 as	 scheduling	 simply	 embraces	 a	 “fairness”	 task	 allocation	 policy.	
Towards	this,	the	RAINBOW	Monitoring	reports	the	underlying	environment	capacity	
in	terms	of	CPU	clock	speed,	CPU	core	count	and	memory	allocated	to	Storm.	These	
metrics	are	periodically	collected	as	the	environment	may	be	dynamically	altered	due	
to	vertical	scaling	actions	(see	FR.DPS.4).	With	these	metrics,	the	RAINBOW	Analytics	
Job	Schedulers	 take	 into	consideration	 the	heterogeneity	of	 the	entire	 fog	 topology	
allocated	to	the	reference	service	and	schedules	tasks	according	the	capabilities	of	the	
underlying	fog	nodes	to	improve	the	overall	performance	of	the	analytics	jobs.		
	
An	example	of	a	heterogeneous	fog	environment	is	shown	below,	where	6	nodes	are	
provisioned	and	a	RAINBOW	Analytics	Worker	 is	deployed	on	each	of	 them.	These	
workers	 are	 configured	with	 different	 computational	 processing	 capabilities	while	
memory	 is	 set	 to	4GB	on	all	nodes	and	network	 connectivity	 is	 stable	with	a	 fixed	
(artificial)	latency	of	20ms	set	on	downlink	and	uplink	connections.	In	the	depicted	
plot,	 we	 see	 that	 in	 order	 to	 meet	 the	 performance	 requirements	 for	 the	 given	
analytics	 job	 (expressed	 in	 terms	of	 latency),	 the	RAINBOW-enabled	PerfScheduler	
that	optimizes	 jobs	for	performance,	allocates	more	tasks	to	the	powerful	nodes	so	
that	the	job	can	achieve	the	desired	performance.		

	
	
ID	 FR.DPS.2	

Title	 Deploy	analytic	jobs	in	geo-distributed	fog	topologies	
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Requirement	
Description	

The	Distributed	Data	Processing	Service	must	be	able	to	deploy	and	
execute	analytic	jobs	over	geo-distributed	environments	and	even	
function	 under	 heterogeneous	 networking	 settings	 between	 the	
Analytics	Workers	and	the	Analytics	Executor.	

Validation	 Completed	 	Status	 	Fulfilled	

During	 deployment,	 the	 Analytics	 Workers	 (Storm	 Supervisors)	 network	
configuration	 is	 automatically	 appended	with	 the	 necessary	 configurations	 so	 that	
network	 traffic	 is	 routed	 through	 the	 RAINBOW	 overlay	 mesh	 network	 that	 is	
established	to	support	secure,	encrypted	and	reactive	routing	among	the	fog	nodes	
dedicated	to	the	deployed	application.	This	configuration	is	completely	transparent	to	
the	 user	 and	 no	 manual	 effort	 is	 required	 whatsoever.	 In	 regards	 to	 network	
heterogeneity,	something	considered	as	the	norm	in	edge	and	fog	environments,	the	
RAINBOW-enabled	 Storm	 Schedulers	 take	 into	 consideration	 this	 case	 as	 well.	
Specifically,	this	Scheduler	takes	advantage	of	the	detailed	monitoring	statistics	made	
available	by	the	RAINBOW	Monitoring,	including	connection	latency,	bandwidth	and	
error	rate,	for	task	allocation.	
	
An	example	of	a	network	heterogeneous	fog	environment	is	shown	below,	where	6	
nodes	are	provisioned	and	a	RAINBOW	Analytics	Worker	is	deployed	on	each	of	them.	
These	workers	are	configured	with	 the	same	computational	processing	capabilities	
but	present	different	network	connectivity	in	terms	of	the	latency	that	is	artificially	
injected	to	their	downlink	and	uplink	connections.	In	the	depicted	plot,	we	see	that	to	
meet	 the	 performance	 requirements	 for	 the	 given	 analytics	 job,	 the	 RAINBOW-
enabled	PerfScheduler	that	optimizes	jobs	for	performance,	allocates	less	tasks	to	the	
more	“distant”	nodes	so	that	the	job	can	achieve	the	desired	performance.		
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ID	 FR.DPS.3	

Title	 Analytics	task	placement	based	on	different	job	optimization	
strategies	for	geo-distributed	fog	realms	

Requirement	
Description	

The	RAINBOW	Distributed	Data	Processing	Service	should	provide	
users	 with	 the	 flexibility	 of	 selecting	 the	 policy/policies	 under	
which	the	task	placement	and	execution	of	their	analytics	jobs	will	
be	 optimized	 by	 the	 Analytics	 Scheduler.	 Specifically,	 RAINBOW	
must	 support	 a	 wide	 range	 of	 schedulers,	 each	 of	 which	 are	
embedded	with	an	algorithmic	process	 capable	of	optimizing	 the	
task	 placement	 of	 IoT	 applications	 deployed	 even	 in	 geo-
distributed	fog	environments.		

Validation	 Completed	 	Status	 	Fulfilled	

The	RAINBOW	Analytics	stack	 is	not	bounded	to	a	specific	scheduler	 for	streaming	
analytic	 jobs.	 Rather,	 RAINBOW	 extends	 the	 IScheduler	 interface	 of	 Storm	 by	
enriching	 it	 with	 the	 ability	 to	 parse	 RAINBOW	 Service	 Graphs	 and	 the	 periodic	
extraction	of	 requested	monitoring	data.	With	 this,	RAINBOW	platform	developers	
(and	 even	 users)	 may	 design	 their	 own	 optimization	 strategies	 and	 implement	
schedulers	 that	 can	be	used	by	 the	distributed	stream	processing	of	RAINBOW.	To	
date,	 RAINBOW	 provides	 users	 with	 4	 Storm	 Schedulers	 (introduced	 in	 detail	 in	
Sections	4.1.3	and	4.1.4).	The	BaselineScheduler	maps	tasks	to	fog	nodes	by	adopting	
a	 fairness	 strategy	 using	 a	 round-robin	 allocation	 mode;	 The	 PerfScheduler	
acknowledges	 both	 the	 heterogeneity	 of	 the	 underlying	 fog	 nodes	 resources	 and	
network	 link	 performance	 to	 optimize	 the	 scheduling	 by	 minimizing	 stream	
processing	latency;	The	PerfDQScheduler	extends	the	performance	scheduler	to	also	
consider	data	quality	as	an	addition	problem	dimension;	and	the	PerfEnergyScheduler	
explores	 tradeoffs	 between	power	 levels	 and	performance	 to	 incur	 energy	 savings	
when	running	streaming	analytic	jobs.	
	
The	 following	 depicts	 an	 example	 of	 a	 fog	 deployment	 running	 an	 analytics	 job	
composed	of	5	StreamSight	queries	executed	using	3	different	schedulers	to	see	how	
the	deployment	is	optimized	depending	on	the	embraced	scheduler.	The	schedulers	
under-examination	 are	 the	 BaselineScheduler,	 PerfScheduler	 (denoted	 in	 plots	 as	
resource)	and	the	PerfEnergyScheduler	(denoted	in	plots	as	energy).	The	deployment	
for	all	three	experiment	runs	is	comprised	of	5	fog	nodes	including	1	Dell	PowerEdge	
R610	server	featuring	12cores@2.4GHz	with	12GB	RAM	and	power	ranging	from	70-
200W	(denoted	as	nc)	and	4	Raspberry	Pi’s	v4	model	B	equipped	with	a	quad	core	
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ARM	Cortex-A72@1.5GHz	and	4GB	RAM	and	power	ranging	from	4-8W	(denoted	as	
rp0-3).	Moreover,	rp1	and	rp3	are	battery-powered.		
	
The	following	2	figures	highlight	the	results	of	the	experimentation.	Specifically,	the	
left	plot	depicts	the	percentage	of	operators	mapped	to	each	fog	node,	while	the	right	
2	 plots	 depict	 the	 overall	 power	 consumption	 and	 latency	 incurred	 of	 the	 two	
RAINBOW	Schedulers	when	compared	to	the	baseline.	In	the	left	plot	we	immediately	
observe	that	in	the	case	of	the	baseline	scheduler,	tasks	are	allocated	fairly	to	all	fog	
nodes	 irrespective	 of	 their	 resource	 capabilities.	 In	 turn,	 when	 embracing	 the	
PerfScheduler,	all	tasks	are	allocated	to	the	powerful	nc1	as	resources	permit	this	and	
communication	 latency	 is	 minimized.	 This	 has	 a	 direct	 positive	 effect	 on	 the	 net	
latency	that	drops	(in	comparison	to	the	baseline)	by	24ms.	However,	to	sufficiently	
achieve	 the	 required	computations,	nc1	 operates	at	high	power	 levels	 that	 result	a	
12%	increment	in	the	net	energy	consumption.	On	the	other	hand,	when	embracing	
the	PerfEnergyScheduler,	the	tasks	are	shared	among	the	two	Raspberry	Pi’s	that	are	
“plugged-in”	and	this	has	a	direct	effect	in	the	net	energy	savings	that	drop	by	18%	
when	compared	to	the	baseline,	albeit	the	net	latency	(as	expected)	increases	by	18ms.	
	

	
	
ID	 FR.DPS.4	

Title	 Operation	under	dynamic	topology	adaptation	

Requirement	
Description	

The	 Distributed	 Data	 Processing	 Service	 must	 be	 able	 to	
acknowledge	dynamic	alterations	of	the	underlying	infrastructure.	
These	alterations	may	take	various	forms	and	include	the	change	of	



	 	

 

	 Project	No	871403	(RAINBOW)	

	 D4.2	–	Data	Management	Services	
	 Date:	31.03.2022	
	 Dissemination	Level:	PU	

	

Page 62 of 92 

Copyright © Rainbow Consortium Partners 2022 

provisioned	resources,	 including	 the	alteration	of	 the	current	 fog	
node(s)	resources	and/or	the	addition/removal	of	fog	nodes.		

Validation	 Completed	 	Status	 	Fulfilled	

As	previously	mentioned,	RAINBOW	Analytic	Workers	are	containerized	and	when	
new	fog	nodes	are	added	(i.e.,	via	horizontal	scaling),	the	workers	are	both	deployed	
and	 configured	 (i.e.,	 Analytics	 Executor	 IP)	 automatically	 by	 the	 RAINBOW	
Orchestrator.	 In	 turn,	 the	 prepare(…)	 method	 of	 the	 RAINBOW-enabled	 Storm	
Schedulers	 is	always	called	upon	when	 the	scheduling	 is	periodically	executed	and	
through	this	method,	data	regarding	the	current	Storm	topology	are	updated	on	the	
Service	Graph	and	passed	to	the	scheduling	while	monitoring	metrics	are	also	received	
so	that	capacity	and	resource	availability	(e.g.,	vertical	scaling,	network	fluctuations)	
are	considered	during	the	updated	task	allocation.		
	
An	example	of	a	heterogeneous	fog	environment	is	shown	below,	where	6	nodes	are	
provisioned	and	a	RAINBOW	Analytics	Worker	 is	deployed	on	each	of	 them.	These	
workers	 are	 configured	with	 different	 computational	 processing	 capabilities	while	
memory	 is	 set	 to	4GB	on	all	nodes	and	network	 connectivity	 is	 stable	with	a	 fixed	
(artificial)	latency	of	20ms	set	on	downlink	and	uplink	connections.	In	the	depicted	
plot,	 we	 see	 that	 in	 order	 to	 meet	 the	 performance	 requirements	 for	 the	 given	
analytics	job	(expressed	in	terms	of	latency),	the	RAINBOW-enabled	resource-aware	
Storm	 Scheduler	 that	 optimizes	 jobs	 for	 performance,	 allocates	more	 tasks	 to	 the	
powerful	nodes	so	that	the	job	can	achieve	the	desired	performance.		
	
As	an	example,	 let	us	consider	a	resource	heterogeneous	deployment	similar	to	the	
deployment	 presented	 in	 FR.DPS.1.	 In	 this,	 6	 nodes	 are	 initially	 provisioned	 and	 a	
RAINBOW	Analytics	Worker	is	deployed	on	each	of	them.	These	workers	are	initially	
configured	 with	 the	 same	 network	 connectivity.	 	 In	 this	 experiment	 a	 RAINBOW	
Scheduler	SLO	is	described	using	the	StreamSight	Query	Model	through	the	RAINBOW	
Dashboard	 and	 the	 SLO	 is	 passed	 to	 the	 RAINBOW	 Orchestrator	 for	 runtime	
assessment.	If	a	violation	occurs	due	to	the	average	network	latency	rising	over	20ms	
then	 a	 new	 fog	 node	 is	 added	 to	 the	 stream	 processing	 and	 similarly,	 when	 the	
network	latency	drops	below	20ms	a	node	is	removed.	For	the	Storm	scheduling	we	
adopt	the	RAINBOW-enabled	BaselineScheduler.	In	the	plot	that	follows,	we	observe	
the	task	allocation	for	Worker-2	where	initially	this	worker	receives	approx.	13%	and	
when	latency	increases	beyond	the	threshold,	a	new	worker	is	added	and	we	observe	
that	Worker-2	task	allocation	drops	to	8%	by	“sharing”	(with	a	short	delay)	part	of	its	
load	with	the	new	worker.	Similarly,	when	the	connectivity	problems	seize	to	exist,	a	
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fog	 node	 is	 decommissioned	 and	 the	 percentage	 of	 tasks	 that	 Worker-2	 receives	
gradually	increases	to	12%.	
	

	
	
	
ID	 FR.DPS.5	

Title	 Operation	under	unexpected	events	and	extreme	network	
uncertainties	

Requirement	
Description	

The	 Distributed	 Data	 Processing	 Service	 must	 be	 able	 to	 both	
acknowledge	 that	 the	 current	 deployment	 is	 undergoing	
unexpected	 events,	 at	 the	 same	 time,	 continue	 seamlessly	 and	
uninterrupted	 the	 execution	 of	 analytic	 jobs.	 These	 unexpected	
“events”	may	take	various	forms	and	include	sudden	increases	 in	
link/network	 latencies,	 the	 appearance	 of	 link	 failures,	 temporal	
link	 disconnections,	 node	 processing	 saturation	 and	 complete	
device	fail-stops.		

Validation	 Completed	 	Status	 	Fulfilled	

RAINBOW-enabled	 Storm	Schedulers	 feature	 the	 ability	 to	 internally	 speculate	 the	
time	duration	of	 running	streaming	 jobs	 that	 compute	continuous	analytic	 insights	
based	on	monitoring	data	collected	by	the	RAINBOW-Monitoring	through	its	Storm	
probing	 interface.	 Analytics	 job	 speculation	 is	 an	 optional	 feature	 that	 users	 can	
enable	 through	 the	 RAINBOW	 Dashboard.	 When	 speculation	 is	 enabled,	 any	
performance	 degradation	 (node	 task	 latency	 is	 X	 percent	 above	 the	 median)	 is	
reported	 and	 the	 RAINBOW-enabled	 Scheduler	 decides	 if	 the	 alteration	 of	 the	
underlying	 infrastructure	 is	 transient	 or	 permanent.	 In	 the	 first	 case,	 the	 system	
temporarily	 redirects	 the	 load	 from	 problematic	 workers	 to	 other,	 under-utilized,	
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Analytics	Workers	so	 that	 it	 can	 self-stabilize	under	 transient	 faults.	 If	 the	problem	
persists	after	a	considerable	time	interval	(e.g.,	a	node	fail-stop),	then	the	algorithmic	
process	will	 not	 assign	 tasks	 to	 these	 faulty	 nodes.	 	 As	 transient	 uncertainties	 are	
significantly	harder	to	cope	with,	the	following	examples	will	illustrate	such	cases.		
	
In	 the	 first	 example,	 we	 consider	 the	 resource	 heterogeneous	 fog	 environment	
described	 in	 FR.DPS.1,	 where	 we	 observe	 (left	 plot)	 that	 the	 RAINBOW-enabled	
PerfScheduler,	allocates	larger	percentage	of	tasks	to	the	more	powerful	nodes.	Now,	
consider	that	the	first	two	worker	nodes	are	introduced	to	an	artificial	CPU	workload	
that	undercuts	the	CPU	power	of	these	nodes	that	is	made	available	to	Storm	by	75%.	
We	observe	(right	plot)	that	the	RAINBOW-enabled	Storm	Scheduler	that	optimizes	
for	 performance,	 acknowledges	 the	 slow	 performing	 workers,	 labels	 them	 as	
stragglers,	 and	 allocates	 larger	 portions	 of	 tasks	 to	 the	 remaining	 nodes	 so	 that	
performance	targets	can	be	achieved.	
	

	
In	 the	 second	 example,	 we	 consider	 the	 network	 heterogeneous	 fog	 environment	
described	 in	 FR.DPS.2,	 where	 we	 observe	 (left	 plot)	 that	 the	 RAINBOW-enabled	
PerfDQScheduler	 that	 optimizes	 for	 performance	 and	 data	 quality,	 also	 allocates	
larger	 percentage	 of	 tasks	 to	 nodes	 that	 feature	 “better”	 connectivity	 in	 terms	 of	
latency.		
	
Now,	consider	that	the	first	two	worker	nodes	are	introduced	to	an	increment	of	their	
latency	to	70ms	that	impairs	the	network	connectivity	and	will	cause	delays	in	data	
movement	 for	 analytic	 computations.	We	 observe	 (right	 plot)	 that	 the	 RAINBOW-
enabled	 Storm	 Scheduler,	 acknowledges	 the	 network	 instability,	 labels	 these	 two	
nodes	as	stragglers,	and	temporarily	“penalizes”	them	by	allocating	larger	portions	of	
tasks	to	the	remaining	nodes	so	that	performance	targets	can	be	achieved.	
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4.4 Documentation and Code Repository 

The	 documentation	 of	 the	 RAINBOW	 Analytics	 Stack	 can	 be	 found	 in	 the	 respective	
section	of	the	RAINBOW	documentation	site:	
	

https://rainbow-h2020.eu/docs/getting-started/rainbow-analytics/		
	

The	 documentation	 includes	 a	 getting	 started	 guide,	 examples	 and	 a	 complete	
documentation	of	the	service	API	calls	and	service	interfaces.		
	
The	source	code	of	the	RAINBOW	Analytics	Stack	is	open-source	and	can	be	found	in	the	
RAINBOW	source	code	repository:	
	

https://gitlab.com/rainbow-project1/rainbow-analytics		
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5 Fog Analytics Service – StreamSight 

In	this	Section,	we	present	a	comprehensive	documentation	report	referring	to	the	final	
release	of	the	Fog	Analytics	Service	denoted	as	StreamSight.	

5.1 Overview 

One	of	the	key	components	of	the	RAINBOW	Analytics	Stack	is	StreamSight.	In	particular,	
StreamSight	provides	a	high-level	declarative	language	that	is	based	on	a	query	model	
intended	 to	 ease	 the	 definition	 of	 streaming	 analytic	 queries,	 while	 also	 providing	
automated	query	optimizations	specifically	tailored	for	fog	deployments.	StreamSight	is	
part	of	the	RAINBOW	Dashboard	and	User	Services	Layer,	while	Figure	10	depicts	a	high-
level	overview	of	the	basic	components	that	StreamSight	is	comprised	of.	
	

	
Figure	10:	High-Level	Overview	of	StreamSight	

In	 brief,	 users	 can	 take	 advantage	 of	 StreamSight	 through	 the	 Analytics	 Editor	
Perspective	of	the	RAINBOW	Dashboard	(see	Section	5.2)	where	a	declarative	SQL-like	
query	language	can	be	used	to	compose	streaming	analytic	queries	that	extract	insights	
relevant	 to	 IoT	 applications	 from	 the	 monitoring	 streams	 exposed	 by	 RAINBOW	
Monitoring	through	the	Storage	Fabric.	A	notable	feature	of	the	StreamSight	query	model	
is	 that	 it	 is	 completely	 decouple	 from	 the	 underlying	 distributed	 processing	 engine,	
making	the	queries	(and	entire	analytic	 jobs)	reusable	on	different	engines,	while	also	
alleviating	the	steep	learning	curve	and	significant	cost	for	development	and	debugging	
when	in	need	to	adopt	different	distributed	processing	engine	programming	models.	
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Once	a	query	is	given	by	the	user,	the	StreamSight	Parser	(in	the	background)	will	parse	
the	query	 and	 translate	 it	 into	 an	Abstract	 Syntax	Tree	 (AST)	 representation.	An	AST	
expresses	the	language’s	grammar	rules,	and	the	final	level	of	the	tree	are	the	tokens	and	
symbols	of	the	query	model.	If	no	valid	AST	can	be	constructed	from	a	query,	the	process	
stops	 and	 returns	 the	 suitable	 error	 message.	 Through	 this	 process,	 the	 Parser	
guarantees	 the	 correctness	 of	 the	 submitted	 queries.	 With	 the	 AST	 in	 hand,	 the	
StreamSight	Optimizer	will	attempt	to	optimize	the	AST	so	a	“better”	query	logical	plan	
can	be	derived.	“Better”	here	means	that	the	query	will	be	optimized	for	fog	deployments	
by	 extracting	 correlations	 between	 queries	 of	 the	 same	 job,	 pruning	 unnecessary	
computations	and	reducing	data	shuffling	to	reduce,	in	turn,	communication	latency.		
	
In	turn,	the	AST	can	also	be	annotated	with	the	scheduling	policies	introduced	in	Chapter	
4.	 Up	 to	 this	 point,	 the	 queries	 of	 a	 streaming	 analytic	 job	 are	 interoperable	 and	
completely	 decoupled	 from	 the	 underlying	 distributed	 engine.	 Hence,	 the	 next	
StreamSight	 component	 is	 the	Compiler	which	 takes	as	 input	 the	optimized	plans	and	
generates	the	final	executable	artifact.	To	achieve	this,	the	Complier	recursively	traverses	
the	optimized	plans	and	“translates”	each	operator	to	the	underlying	distributed	engine	
code.	The	generated	code	should	be	specific	 for	each	underlying	engine,	so	during	the	
translation	process,	Optimizer	invokes	the	selected	streaming	library	for	the	respected	
underlying	 distributed	 data	 processing	 engine.	 To	 date,	 StreamSight	 supports	 three	
streaming	library	compilers,	namely	for	Spark-Streaming,	Storm	and	RAINBOW-enabled	
Storm	deployments.	What	parts	of	the	StreamSight	query	model	are	supported	by	these	
three	libraries	is	highlighted	in	Section	5.2.4.	
	

5.2 New Functionality and Improvements 

5.2.1 StreamSight Query Model 

The	StreamSight	query	model	offers	users	the	ability	to	create	insights,	denoted	as	high-
level	queries	composed	from	raw	monitoring	metric	streams.	In	a	nutshell,	an	insight	is	a	
new	 data	 stream	 that	 comes	 from	 one	 (or	 more)	 processed	 stream(s).	 Query	 model	
operators	introduce	aggregations,	compositions,	and	transformations	on	top	of	multiple	
monitoring	metrics	exposed	by	the	input	stream.	
	

	
Figure	11:	StreamSight	Abstract	Syntax	
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Figure	11	depicts	the	basic	structure	of	an	insight.	The	simplest	insight	structure	includes	
only	 the	 insight_name	 followed	 by	 a	COMPUTE	 statement.	 The	COMPUTE	 statement	
requires	a	composite	expression	(e.g.,	an	aggregation	function	on	a	stream).	Furthermore,	
the	model	 offers	 three	 optional	 primitives,	 namely,	 (i)	WHEN	 primitive	 that	 filters	 a	
stream	 by	 applying	 specific	 predicates;	 (ii)	EVERY	 primitive	 that	 alternates	 a	 purely	
streaming	execution	to	a	(micro-)batch	query	evaluation;	and	(iii)	the	WITH	statement	
in	 which	 users	 define	 optimizations	 provided	 by	 the	 RAINBOW	 platform,	 such	 as	
sampling,	prioritizing	of	the	results,	constraints	enforcement,	etc.	
	
We	note	that	during	the	first	reporting	period	(coincides	with	the	first	RAINBOW	release)	
the	 focus	 of	 this	 task	was	 to	 extend	 the	 StreamSight	 query	model	 to	 fit	 the	 needs	 of	
RAINBOW	 and	 fog	 deployments	 in	 general.	 The	 complete	 query	 model	 has	 been	
thoroughly	described	in	D4.1.	Nonetheless,	the	appendix	contains	a	compact	version	of	
the	query	model	in	a	formative	EBNF	depiction.	The	focus	of	the	second	reporting	period	
was	 to	 implement	 the	 operators’	 part	 of	 the	 query	 model	 and	 create	 the	 relevant	
StreamSight	compilers.	 In	 the	next	sections,	we	present	examples	of	queries	compiled	
using	 the	 StreamSight	 query	model	 and	 a	 description	 of	 the	 journey	 of	 a	 query	 (and	
analytics	job)	from	its	inception	by	the	user,	to	the	point	of	execution	by	the	RAINBOW-
enabled	distributed	processing	engine.	We	note	that	query	examples	presented	are	actual	
(or	inspired	from)	queries	created	for	the	tests	performed	by	the	demonstrators	for	the	
purposes	of	D6.8.	
	

5.2.2 Representative Queries 

5.2.2.1 Typical SLOs 

One	 of	 the	 most	 common	 approaches	 of	 orchestrators	 to	 provide	 stable	 SLOs	 is	 to	
perform	scaling	actions	based	on	summarized	analytics	on	target	metrics.	During	the	use	
case	evaluation,	demonstrators	defined	various	SLOs	based	on	target	utilization	metrics.	
For	instance,	Figure	12	depicts	how	RAINBOW's	query	language	can	describe	the	latter,	
with	the	target	metric	being	the	CPU	utilization.	Before	continuing	with	the	actual	analytic	
query,	we	have	to	define	the	declaration	of	the	stream	source.	Specifically,	the	lines	1-4	
declare	a	metric	stream	that	came	from	the	RAINBOW's	Storage	Fabric,	as	well	as	a	set	of	
parameters	that	should	be	valid	for	Storage	Fabric	to	return	the	data	points.	Rather	than	
fetching	all	data	points	to	the	processing	engine	and	filtering	them	there,	we	decided	on	
the	declaration	of	streams	that	filter	out	unnecessary	data	earlier	(on	the	Storage	Fabric)	
to	minimize	the	data	transfer	between	the	storage	and	the	processing	layers.		
	
After	the	definition	of	the	stream,	users	can	utilize	it	to	perform	the	actual	analysis.	Lines	
Z-Y	introduce	the	average	(AVG)	aggregation	for	one	minute	(60	SECONDS)	of	metric	CPU	
percentage	(cpu_ptc)	from	the	metric-stream	cpu_stream.	The	output	of	this	computation	
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will	generate	every	10	seconds	but	will	be	disseminated	to	the	Storage	Fabric	only	if	the	
result	 is	 higher	 or	 equal	 to	 80%	 (WHEN	 >=60.0).	 We	 should	 note	 here	 that	 query	
language	has	a	plethora	of	different	statistics,	 including	maximum,	minimum,	average,	
percentiles,	count,	and	many	more.	Third	RAINBOW	use-case	(UC3)	utilized	the	previous	
query	to	increase	its	performance.	
	

	
Figure	12	CPU-based	SLO	analytic	query	

	

5.2.2.2 Abnormal Values of a Metric Stream 

Moreover,	in	a	deployment	where	there	are	numerous	physical	components,	like	swarm	
of	drones	or	robotic	grippers,	operators	may	need	to	evaluate	unexpected	values	from	
environmental	or	 infrastructure	metrics,	 such	as	abnormal	 temperature.	For	 instance,	
when	 the	 temperature	 of	 a	 drone’s	 fan	 exceeds	 three	 standard	 deviations	 of	 the	
cumulative	average	of	its	historical	temperature	measurements,	it	would	be	considered	
abnormal,	and	the	system	need	to	land	the	drone	and	notify	the	technical	department	to	
evaluate	the	functionality	of	this	drone.	The	insight	“abnormal_temperature”	(Figure	13)	
highlights	 how	 the	 previously	 mentioned	 example	 can	 be	 expressed	 via	 our	 query	
language.	 Since	 the	 language	 give	 us	 the	 opportunity	 to	 use	 multiple	 aggregation	
functions	on	the	same	stream,	we	are	able	to	apply	the	average	(AVG),	the	cumulative	
average	(RUNNING_MEAN)	and	the	cumulative	standard	deviation	(RUNNING_STD)	in	a	
single	line	along	with	arithmetic	operators.				
	

	
Figure	13	Complex	Analytic	Query	for	Abnormal	Values	Detection	
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5.2.2.3 Performance Evaluation of Custom Metrics 

In	 a	 Human-Robot	 Collaboration	 within	 the	 Industrial	 Ecosystems	 use	 case	 (UC1),	
operators	need	to	take	actions	based	on	the	processing	rate	of	the	incoming	data.	The	
software	design	of	this	use	case	utilizes	message	queues	for	injecting	robots'	and	humans'	
data	 to	 separate	 processing	 services.	 To	 guarantee	 the	 performance	 of	 the	 deployed	
services,	operators	need	to	scale	their	services	if	any	of	the	services	(human	or	robot	data	
processing	 service)	 are	 not	 capable	 of	 performing	 in	 time	 processing.	 For	 the	 latter	
reason,	the	user	exposes	the	message	queue	statistics	to	the	RAINBOW	monitoring,	and	
the	RAINBOW	Analytics	Service	can	retrieve	and	generate	performance	insights	based	on	
them.	
	
Figure	14	highlights	two	RAINBOW	streaming	analytic	queries:	(i)	robot	processing	delay	
ratio	 and	 (ii)	 human	processing	 delay	 ratio.	 Initially,	 lines	 1-2	 retrieve	 the	 respective	
streams	 from	 the	RAINBOW	Storage	Fabric.	Then,	 the	 system	computes	 a	normalized	
(100.0*)	ratio	between	the	maximum	robot's	generation	data	rate	(robot_publish_rate)	
and	processed	data	rate	(robot_deliver_rate)	for	the	last	10	seconds.	The	latter	insight	
will	be	executed	every	5	seconds.	Similarly,	the	operator	needs	to	compute	an	analogous	
ratio	for	humans	(walkers).	Since	humans'	data	processing	is	more	crucial	for	accident	
avoidance,	the	aggregation	window	and	the	interval	are	5	and	1	seconds,	respectively.	In	
this	example,	UC3	queries	highlight	the	flexibility	of	our	query	model	to	express	more	
complex	queries	with	mathematical	operators,	like	+,	-,	*,	/,	etc.	
	

	
Figure	14	Multiple	Analytic	Queries	for	Performance	Evaluation	

5.2.2.4 Machinery Maintenance 

Following	 the	 performance	 of	 the	 previous	 example,	 the	 functionality	 of	 the	 existing	
machinery	 is	 also	 a	 crucial	 indicator	 of	 this	UC.	 The	 outliers'	 detection	 in	monitoring	
stream	 from	 robot	 joints	 may	 prevent	 mis-functionality	 on	 the	 whole	 production	
pipeline.	 Even	 if	 there	 are	 many	 implementations	 of	 outliers'	 detection	 in	 streaming	
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analytics,	we	selected	to	provide	a	set	of	distance-based	outlier	detection	algorithms,	as	
we	 introduced	 in	 [40].	A	distance-based	outlier	detector	 considers	as	outliers	all	data	
points	 that	have	 less	 than	k-neighbours	 in	a	distance,	denoted	as	R.	Furthermore,	 the	
solution	 is	 extended	 with	 the	 explanatory	 algorithms	 introduced	 in	 [42].	 Traditional	
distance-based	outlier	detection	outputs	only	the	data	points	that	are	deemed	outliers	
under	the	specified	user	parameters	(k,R).	The	explanatory	techniques	complement	the	
detector’s	 output	 by	 providing	 information	 on	 the	 outlier’s	 vicinity,	 e.g.,	whether	 it	 is	
isolated	or	belongs	to	a	cluster	of	varying	size	and	density.	This	helps	identify	whether	it	
is	 an	 extreme	 case	 or	 a	 problematic	 behaviour	 that	might	 affect	 nearby	 (future)	 data	
points	(i.e.,	if	the	outlier	belongs	to	a	small	cluster)	in	order	to	prevent	them.		
	
In	 our	 implementation,	 we	 consider	 only	 single	 dimension	 outlier	 detection.	 That	
dimension	is	the	current	stream	value	as	described	in	the	query	definition	from	the	user.	
Because	the	outlier	detector	in	a	streaming	setting	needs	a	window	and	a	sliding	interval,	
we	 created	 a	 new	window	 operator	 named	OUTLIER_DETECTOR	 that	 comes	with	 an	
extra	WITH	statement	in	which	the	user	selects	a	specific	algorithm	and	its	parameters.	
Next,	we	demonstrate	an	example	of	PMCOD	algorithm	[41]	that	is	able	to	detect	outliers	
on	 the	 count	 joint	movements	 and	 has	 as	 parameters	 a	 window	 of	 ten	minutes,	 five	
seconds	sliding	interval,	takes	into	consideration	fifty	neighbors	in	range	equals	to	0.5.	
	

	
Figure	15	Machinery	Maintenance	via	Outlier	Detection	Query	

5.2.2.5 Notifications based on events 

Observing	urban	mobility	(UC2)	is	a	demanding	task	that	needs	on-time	responses	and	
notifications.	Figure	16	introduces	a	representative	query	that	an	operator	would	like	to	
evaluate	on	a	deployment.	Specifically,	the	operator	exports	the	"dangerous"	events	from	
the	application	as	custom	metrics.	When	the	service	 identifies	a	"dangerous"	situation	
exposes	a	custom	monitoring	metric	to	the	RAINBOW's	monitoring	stack.	The	value	of	
the	metric	is	decimal	and	defines	its	level	of	emerging.	Through	line	1,	the	StreamSight	
retrieves	the	metric	stream	from	Storage	Fabric.	Then,	lines	2-4	perform	the	execution	of	
the	 actual	 query.	 The	 query	 adds	 all	 dangerous	 events	 that	 appeared	 in	 a	 node	 and	
returns	the	node	ids	with	a	score	of	5	or	more.	When	the	analytic	query	outputs	a	result,	
the	RAINBOW	platform	updates	its	dashboard,	and,	consequently,	notifies	the	user.	
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Figure	16	Query	for	Event-based	Notifications	

5.2.2.6 Energy and Performance Optimizations 

In	an	urban	mobility	scenario,	there	is	a	need	for	energy	efficient	processing	and	low-
latency	results.	Furthermore,	there	is	a	possibility	for	battery	powered	devices	while	also	
the	 physical	 devices	 that	 are	 deployed	 in	 the	 urban	 environment	 needs	 power	 to	 be	
functional.	 To	 handle	 such	 regular	 situations	 in	 Fog	 environments,	 query	 language	
provides	 a	 wide	 range	 of	 optimizations	 providing	 them	 by	 “WITH”	 primitive.	 For	
instance,	 Figure	 17	 introduce	 some	 optimizations	 related	 to	 performance	 and	 energy	
consumption.	Specifically,	the	user	selects	the	scheduler	to	be	the	energy	aware	algorithm	
for	 the	“running_cpu_util”	 insight.	The	scheduler	will	be	 invoked	from	the	RAINBOW’s	
schedulers	repository	at	the	query	submission.	The	system	will	place	the	query’s	tasks	
and	operators	based	on	the	scheduler’s	suggestions.		
	
Moreover,	in	the	second	insight,	the	user	selects	to	apply	the	summary	statistic	(average)	
on	 a	 sample	 of	 incoming	 data,	 sacrificing	 a	 portion	 of	 accuracy	 for	 on	 time	 results.	
However,	 the	 SAMPLE	 primitive	 does	 not	 guarantee	 nor	 predict	 the	 error	 of	 the	
generated	 results.	 For	 the	 latter,	 the	 query	 language	 provides	 the	 MAX_ERROR	 and	
CONFIDENCE	 primitives	 that	 tuning	 the	 sampling	 size	 to	 fulfil	 the	 desired	maximum	
error	and	confidence.		
	
The	 last	 insight	of	 	Figure	17	 introduces	a	such	query	that	computes	the	average	GPU	
memory	load	with	the	maximum	error	not	exceeding	5%	and	its	confidence	to	be	95%.	
	

	
Figure	17	Multiple	Queries	with	Energy-	and	Performance-aware	Execution	
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5.2.3 The Journey of a query  

Users	 can	 create	 streaming	 analytic	 jobs	 in	 two	ways.	 One	way	 is	 by	 designing	 their	
queries	externally	(away	from	RAINBOW	Dashboard)	and	then	submitting	through	the	
Analytics	Enabler	API.	The	API	is	on-line	and	available	in	Analytics	Enabler	Repository	
(Section	5.4).	The	second	way	is	actually	the	more	intuitive	way,	where	users	embrace	
the	Analytics	Perspective	of	the	RAINBOW	Dashboard	to	both	create	new	analytic	jobs	
and	subsequently	queries.	Figure	18	introduces	the	interface	to	create	a	new	analytic	job,	
while	 Figure	 19	 presents	 the	 query	 interface.	 From	 this	 figure,	 one	 can	 immediately	
observe	that	queries	can	be	constructed	without	even	knowing	the	simple	StreamSight	
language	primitives	as	the	interface	provides	users	with	a	graphical	guide	of	dropdown	
menus	to	guide	the	user	in	the	query	definition.	
	

	
Figure	18:	RAINBOW	Dashboard	-	Create	New	Analytics	Job	
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Figure	19:	RAINBOW	Dashboard	-	Create	New	Analytics	Query	(Assistant	Interface)	

	
When	 an	 analytics	 job	 is	 complete,	 users	 submit	 the	 job	 through	 the	 Dashboard	 by	
clicking	on	the	submit	job	button.	At	this	point,	the	Dashboard	communicates	with	the	
Analytics	Enabler	via	a	restful	HTTP	request	and	submits	the	query	(or	queries).	In	the	
background,	Analytics	Enabler	utilizes	the	StreamSight	compiler.	Specifically,	the	queries	
of	 the	 analytic	 job	 are	 translated	 into	 their	 AST	 representation	 and	 are	 also	 passed	
through	 the	 optimization	 process	 to	 derive	 efficient	 query	 logical	 plans	 for	 their	
execution	in	a	fog	environment.	
	
Suppose	a	user	submits	the	following	query	through	the	RAINBOW	Dashboard:	

	
Figure	20	StreamSight	Query	Example	

The	query	calculates	the	average	available	system’s	CPU	of	all	cluster	as	it	is	reported	the	
last	10	seconds,	and	the	query	will	be	evaluated	every	5	seconds.	When	the	user	submits	
the	previous	query,	the	StreamSight	Compiler	generates	an	abstract	syntax	tree	(AST).	
The	AST	representation	generated	by	StreamSight	is	the	following:	
	



	 	

 

	 Project	No	871403	(RAINBOW)	

	 D4.2	–	Data	Management	Services	
	 Date:	31.03.2022	
	 Dissemination	Level:	PU	

	

Page 75 of 92 

Copyright © Rainbow Consortium Partners 2022 

	
	

Figure	21	AST	Representation	of	StreamSight	Query	

At	this	point,	the	system	gathers	all	ASTs	of	the	queries	and	optimizes	them	by	merging	
(sub-)queries	that	perform	the	same	operators	on	the	same	data	streams.	Since	in	this	
example	we	submitted	only	one	query,	there	is	no	optimization	opportunity.	We	should	
note	that	an	example	of	the	optimization	process	is	presented	in	Section	5.3	(FR.AS.4).		
	
Next,	the	generated	AST	of	the	query	is	ready	to	be	compiled	into	an	executable	that	will	
be	 deployed	 on	 the	 underlying	 distributed	 data	 processing	 engine.	 Hence,	 the	
StreamSight	Compiler	for	RAINBOW-enabled	Storm	deployments	is	invoked	and	the	AST	
is	translated	into	Storm	operators	supporting	RAINBOW	optimizations.	Specifically,	the	
StreamSight	translation	process	traverses	the	tree	structure	of	the	AST	and	automatically	
generates	the	respective	Storm	code.	Followingly,	we	provide	a	prototype	Apache	Storm’s	
code	snippet	that	highlights	the	previously	described	query	(aka	the	streaming	average)	
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Figure	22	Translated	Code	(Apache	Storm)	of	the	StreamSight	Query	

	
Then,	submits	the	code	to	the	Storm	cluster,	and	Storm	(based	on	updated	schedulers)	is	
responsible	 for	 placing	 the	 operators	 and	 tasks	 on	 the	 underlying	 cluster.	 Figure	 22	
depicts	the	previous	query	AST	compiled	into	a	Storm	job.	The	picture	is	taken	from	the	
user	interface	of	the	Apache	Storm	and	highlights	the	generated	operators	and	the	logical	
plan	 of	 the	 submitted	 query.	 Storm	 has	 already	 placed	 the	 operators/tasks	 on	 the	
Analytics	Workers.	
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Figure	23	Apache	Storm	Execution	Plan	(DAG)	of	the	StreamSight	Query	

Note:	an	example	of	a	query	AST	compiled	into	both	a	Spark	and	Storm	job,	without	any	
chances	required	to	the	AST,	is	presented	in	Section	5.3	(FR.AS.3)	
	

5.2.4 StreamSight Compilers’ Coverage of RAINBOW Query Model  

The	following	table	depicts	the	coverage	of	the	RAINBOW	query	model	by	the	different	
compiler	 implementations.	 From	 a	 first	 glance,	 all	 compilers	 support	 the	 basic	 query	
operators	required	to	output	streaming	analytics.	However,	only	the	RAINBOW-enabled	
Storm	 compiler	 presents	 the	 functionality	 to	 provide	 the	 fog	 realm	 optimizations	
proposed	by	RAINBOW	and	introduced	in	D4.1.		
	
Functionality	 Spark	

Streaming	
Storm	 RAINBOW	

Storm	

Descriptive	statistics	 X	 X	 X	
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Data	filtering	 X	 X	 X	

Data	transformations	 X	 X	 X	

Data	grouping	 X	 X	 X	

Windowing	 X	 X	 X	

Multiple	data	streaming	and	joins	 	 X	 X	

Sampling	 X	 	 X	

Query	prioritization	 X	 	 X	

Outlier	Detection	 	 	 X	

Operator	placement	directives	 	 	 X	

Job	scheduling	policy	hints	 	 	 X	
Table	3:	StreamSight	Compilers'	Coverage	of	RAINBOW	Query	Model	

	

5.3 Requirements Fulfillment 

This	 Section	 provides	 a	 report	 on	 the	 fulfillment	 of	 the	 requirements	 list	 of	 the	 Fog	
Analytics	Service	as	documented	in	D4.1.	
	

ID	 FR.AS.1	

Title	 High-Level	declarative	query	model	for	fog	analytics	

Requirement	
Description	

The	Fog	Analytics	Service	must	provide	RAINBOW	users	with	the	
ability	 to	 design	 analytics	 jobs	 composed	 of	 queries	 extracting	
analytic	 insights	 from	 monitoring	 data	 harvested	 by	 the	
deployment	 of	 their	 IoT	 applications	 over	 a	 fog	 environment.	 To	
achieve	this	a	descriptive	query	model	must	be	provided	with	the	
syntax,	 for	 query	 composition,	 understandable	 even	 from	 non-
expert	 users	 and	 should	 not	 imply	 knowledge	 of	 a	 particular	
programming	model	 or	 assume	 a	 specific	 distributed	 processing	
engine.	

Validation	 Completed	 	Status	 	Fulfilled	

The	 high-level	 declarative	 query	 model	 for	 streaming	 analytics	 in	 fog/edge	
environments	 has	 been	 described	 in	 D4.1,	 while	 an	 updated	 version	 of	 the	 query	
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model	 in	a	normative	EBNF	form	is	available	 in	the	appendix	of	this	deliverable.	 In	
brief,	RAINBOW	eases	the	programmability	and	compilation	of	streaming	analytic	jobs	
by	 providing	 high-level	 operators	 that	 can	 be	 composed	 together	 to	 apply	
aggregations,	 transformations,	 filters	and	groupings	on	data	streamed	 from	the	 fog	
nodes	belonging	to	the	deployment	of	an	IoT	application.	These	operators	can	also	be	
“windowed”,	with	windows	either	being	event	or	time-based	and	time-based	windows	
can	be	tumbling	or	sliding	windows.	
	
In	 brief,	 we	 described	 many	 examples	 in	 D4.1	 Section	 5.2.2	 related	 with	 the	
expressivity	of	the	query	model.	Moreover,	the	previous	Section	5.2.2	of	the	current	
deliverable	presents	examples	of	many	declarative	analytic	queries	created	and	used	
by	the	RAINBOW	demonstrators	when	tests	were	being	performed	for	D6.8.	

	
	
ID	 FR.AS.2	

Title	 Streaming	analytics	(continuous	queries)	

Requirement	
Description	

The	Fog	Analytics	Service	must	support	streaming	analytic	queries	
that	will	be	evaluated	 in	real-time.	This	requirement	comes	 from	
both	users,	which	would	like	to	observe	their	applications	and	be	
aware	of	inefficiencies,	and	the	RAINBOW	scheduler	that	needs	to	
analyze	the	monitored	data	as	soon	as	possible.		

Validation	 Completed	 	Status	 	Fulfilled	

The	 RAINBOW	 query	 model	 supports	 streaming	 analytics	 and	 the	 application	 of	
continuous	analytics	 jobs.	For	 the	query	model,	 the	 input	of	a	query	are	1	or	more	
monitoring	metric	streams	where	are	the	application	of	a	chain	of	query	operators,	
the	output	is	a	stream	as	well.	This	output	is	denoted	as	an	insight	stream	and	nothing	
segments	 an	 insight	 stream	 from	 an	 input	 stream	 and	 this	 has	 been	 designed	
intentionally	so	that	an	insight	stream	may	be	further	given	to	other	queries	so	more	
insights	are	generated.	
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Moreover,	 the	RAINBOW	query	model	 supports	 two	 streaming	execution	modes,	 a	
pure	 streaming	mode	where	on	 the	arrival	of	a	new	 tuple	 the	query	operators	are	
applied	and	a	micro-batch	mode	where	 the	 incoming	datapoints	are	windowed	(as	
elaborated	 in	 FR.AS.1)	 and	 insights	 are	 computed	 per	 window.	 Examples	 of	 both	
modes	have	been	introduced	in	FR.AS.1.	

	
ID	 FR.AS.3	

Title	 Query	model	decoupled	from	the	underlying	
processing	engine	

Requirement	
Description	

Fog	 Computing	 is	 a	 constantly	 evolving	 environment,	 so	
RAINBOW	query	model	should	not	be	coupled	with	a	specific	
underlying	engine.	 Specifically,	 the	model	 should	be	easily	
translatable	 into	 different	 distributed	 engines	 with	
minimum	effort.	

Validation	 Completed	 	Status	 	Fulfilled	

The	 StreamSight	 query	model	 is	 designed	 intentionally	 to	 be	 decoupled	 from	 any	
programming	 primitives	 of	 both	 the	 underlying	 execution	 environment	 and	 the	
adopted	 distributed	 data	 processing	 engine.	 Specifically,	 analytic	 queries	 are	
translated	automatically	in	the	background	to	an	abstract	syntax	tree	(AST)	and	with	
this	 representation,	 StreamSight	 employs	 optimizations	 to	 derive	 a	 more	 efficient	
query	logic	plan	(see	FR.AS.4)	and	afterwards	compile	the	continuous	job	artifacts	that	
will	be	used	for	the	execution.	To	compile	the	job,	StreamSight	currently	features	three	
compiler	implementations	for:	(i)	Spark	Streaming;	(ii)	Storm	(vanilla	version);	and	
(iii)	RAINBOW-enabled	Storm	that	features	the	use	of	the	Analytics	Enabler	and	the	
StreamSight	 job	optimizations	 for	 the	 Schedulers	 referenced	 in	Chapter	4.	Nothing	
excludes	 the	adoption	of	more	 streaming	engines	other	 than	 the	effort	 required	 to	
implement	the	new	compiler.	Most	importantly,	queries	are	designed	once	and	can	be	
used	not	only	multiple	times	but	also	on	multiple	engines,	thus	breaking	the	so	called	
“analytics	governance	lock-in”.		
	
The	following	example	illustrates	an	example	of	a	StreamSight	query,	its	mapping	to	
an	AST	representation	and	the	same	query	translated	into	Apache	Spark	and	Storm.	
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ID	 FR.AS.4	

Title	 Optimization	of	generated	analytics	job	execution	plan	
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Requirement	
Description	

The	 compilation	 of	 a	 set	 of	 queries	 should	 generate	 a	 highly	
optimized	 executable	 that	 minimizes	 the	 data	 transfer	 and	
computations	in	the	execution	time.			

Validation	 Completed	 	Status	 	Fulfilled	

Once	a	StreamSight	query	is	automatically	translated	in	the	background	into	an	AST	
representation	(FR.AS.3),	then	the	AST	formalism	is	given	to	the	StreamSight	Query	
Optimizer	in	an	attempt	to	derive	a	query	logical	plan	that	is	more	efficient.	“Efficient”	
for	a	fog/edge	environment	is	regarded	a	query	that	reduces	both	the	computational	
effort	applied	and	the	amount	of	data	needed	to	be	disseminated	when	a	data	shuffling	
operator	 (i.e.,	 reduce,	 group-by)	 is	applied.	Towards	 this,	 the	Optimizer	 recognizes	
when	 query	 operators	 are	 being	 re-applied	 and	 intermediate	 results	 are	 being	 re-
computed	again	and	again,	and	when	this	is	detected	results	are	“pushed”	through	the	
logical	plan	to	avoid	the	unnecessary	processing	effort	and	reducing	the	overall	data	
that	must	be	disseminated.	In	turn,	for	streaming	engines	such	as	Spark	and	Storm,	
queries	of	the	same	job	that	are	always	executed	as	independent	processes	ignoring	
the	fact	that	parts	of	these	queries	could	be	exactly	the	same	computation.	StreamSight	
analyses	the	list	of	ASTs	given	for	a	job	and	detects	such	similarities,	altering	the	ASTs	
to	accept	and	share	input	from	other	queries.	
	
The	following	example	illustrates	two	exemplary	queries	part	of	the	same	continuous	
analytics	 job	 where	 the	 results	 of	 the	 first	 query	 are	 given	 as	 direct	 input	 to	 the	
hierarchical	structure	of	the	second	query	to	avoid	the	re-computation	of	results	that	
are	 already	 available.	 This	 possible	 thanks	 to	 the	 fact	 that	 for	 StreamSight	 output	
streams	(insights)	have	nothing	different	from	input	streams,	thus	enabling	insights	
to	be	attached	as	input	to	other	queries	(as	previously	mentioned	in	FR.AS.2).	
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5.4 Documentation and Code Repository 

As	StreamSight	is	part	of	the	RAINBOW	Analytics	Stack,	the	documentation	can	be	found	
in	the	respective	section	of	the	RAINBOW	documentation	site:	
	

https://rainbow-h2020.eu/docs/getting-started/rainbow-analytics/		
	

The	 documentation	 includes	 a	 getting	 started	 guide,	 examples	 and	 a	 complete	
documentation	of	the	service	API	calls	and	service	interfaces.		
	
The	source	code	of	the	RAINBOW	Analytics	Stack	is	open-source	and	can	be	found	in	the	
RAINBOW	source	code	repository:	
	

https://gitlab.com/rainbow-project1/rainbow-analytics		
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6 Conclusion 

In	the	present	Deliverable,	we	highlighted	a	detailed	analysis	of	all	essential	information	
towards	the	implementation	details	of	the	RAINBOW	Data	Management	Services,	as	they	
are	 planned	 and	 created	 during	 the	 implementation	 of	 Work	 Package	 4.	 Data	
Management	 Services	 are	 composed	 of	 three	 components,	 specifically:	 (i)	 Distributed	
Data	Storage	and	Sharing	Service,	(ii)	Distributed	Data	Processing	Service,	and	(iii)	Fog	
Analytics	Service.		
			
Starting	 from	 the	 state-of-the-art,	 we	 examined	 a	 wide	 range	 of	 related	 efforts.	 We	
highlighted	their	advantages	and	limitations.	Thus,	holding	a	clear	outline	of	the	state-of-
the-art	 and	 RAINBOW's	 requirements,	 as	 described	 in	 D4.1,	 we	 underlined	 how	 we	
advance	the	state-of-the-art	and	fulfill	the	functional	and	non-functional	requirements.	
Furthermore,	we	delivered	implementation	details	of	each	component,	offered	examples	
of	their	use,	and	justified	the	fulfillment	of	the	D4.1	requirements.		
			
Specifically,	Distributed	Data	Storage	and	Sharing	Service	is	realized	as	an	extension	of	
the	Apache	Ignite	in-memory	data	storage,	and	we	extended	the	Apache	Ignite	with	novel	
techniques	for	data	sharing,	balancing,	and	replication	on	Fog	Computing	infrastructures.	
We	 described	 in	 detail	 algorithmic	 and	 implementation	 aspects.	 Furthermore,	
Distributed	Data	Storage	and	Sharing	Service	realizes	a	unified	storage	fabric	abstracting	
the	underlying	data	retrieval	processes	and	facilities	in	the	interoperability	among	the	
RAINBOW	services.		
			
The	next	component	of	the	Analytics	Services	is	the	Distributed	Data	Processing	service	
that	 facilities	 in	 fog-enabled	 data	 processing.	 As	we	 previously	 described,	we	 utilized	
Apache	Storm	as	the	default	processing	engine	of	RAINBOW,	extending	it	with	a	handful	
of	 novel	 Fog-aware	 scheduling	 algorithms,	 tailored	 to	 specific	 aspects,	 e.g.,	 energy	
consumption,	 performance,	 etc.	 Furthermore,	 we	 evaluated	 the	 fulfillment	 of	 the	
Distributed	Data	Processing	service	requirements	by	providing	a	comparison	between	
the	baseline	(Apache	Storm	vanilla	implementation)	and	RAINBOW-enabled	scheduling	
algorithms.	 To	 show	 the	 performance	 and	 utilization	 (e.g.,	 energy)	 gains	 of	 our	
algorithms,	 we	 performed	 repeatable	 experiments	 on	 both	 real	 and	 emulated	 Fog	
environments.		
			
Finally,	the	Fog	Analytics	Service	is	the	last	component	of	the	RAINBOW	analytics	stack.	
It	offers	a	high-level	declarative	query	model	abstracting	the	analytics	description	from	
the	real-time	monitoring	data.	To	highlight	the	usability	of	the	RAINBOW	query	model,	
we	introduced	a	wide	range	of	queries	that	RAINBOW	use	cases	have	applied	to	analyze	
their	applications	and	as	SLOs	indicators.	Even	though	the	model	is	decoupled	from	the	
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underlying	engine,	it	facilitates	the	declaration	of	fog-aware	optimizations	that	RAINBOW	
schedulers	 can	 apply.	 Finally,	 we	 explained	 how	 the	 proposed	 query	 model	 and	 its	
compilation	process	satisfied	the	RAINBOW's	requirements.	 	
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Appendix 

In	the	appendix,	we	provide	the	extended	Backus–Naur	form	(EBNF)	of	analytics	query	
language	(aka	RAINBOW-enabled	StreamSight	model).	Specifically,	Figure	24	and	Figure	
25	present	EBNF	grammar	file	and	lexer	file,	respectively.		
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Figure	24	Antlr	EBNF	grammar	file	
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Figure	25	Antlr	EBNF	lexer	file	


