
	
	

	

The work described in this document has been conducted within the project RAINBOW. This project has received
funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the Grant
Agreement no 871403. This document does not represent the opinion of the European Union, and the European
Union is not responsible for any use that might be made of such content.	
	

	

Project	Title	 AN	 OPEN,	 TRUSTED	 FOG	 COMPUTING	 PLATFORM	
FACILITATING	 THE	 DEPLOYMENT,	 ORCHESTRATION	 AND	
MANAGEMENT	OF	SCALABLE,	HETEROGENEOUS	AND	SECURE	
IOT	SERVICES	AND	CROSS-CLOUD	APPS	

Project	Acronym	 RAINBOW	

Grant	 Agreement	
No	 871403	

Instrument	 Research	and	Innovation	action	

Call	/	Topic	 H2020-ICT-2019-2020	/		
Cloud	Computing	

Start	Date	of	Project	 01/01/2020	

Duration	of	Project	 36	months	
	
	

D5.1 – Technical Integration and Testing
Plan
	
Work	Package	 WP5	–	Continuous	Integration	and	Accessability	

Lead	Author	(Org)	 Orfeas	Panagou,	Alex	Bensenousi	(INTRASOFT)	

Contributing	
Author(s)	(Org)	

Thodoris	Toliopoulos	(AUTH),	Thomas	Pusztai	(TUW),	Moysis	
Symeonides,	 Dimitris	 Trihinas	 (UCY),	 Panagiotis	 Gouvas,	
Konstantinos	 Theodosiou	 (UBI),	 Sotiris	 Kousouris	 (SUITE5),	
Athanasios	Giannetsos	(DTU)	

Due	Date	 31.12.2020	
Actual	 Date	 of	
Submission	 31.12.2020	

Version	 1.0	
	
Dissemination	Level	
	
X	 PU:	Public	(*on-line	platform)	
	 PP:	Restricted	to	other	programme	participants	(including	the	Commission)		
	 RE:	Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission)	
	 CO:	Confidential,	only	for	members	of	the	consortium	(including	the	Commission)	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 2 of 39

Copyright © Rainbow Consortium Partners 2020

Versioning	and	contribution	history	

Version	 Date	 Author		 Notes	

0.1	 15.10.2020	 Orfeas	Panagou,	Alex	Bensenousi	
(INTRASOFT)	

Initial	ToC	

0.2	 27.10.2020	 Orfeas	Panagou	(INTRASOFT)	 Content	on	section	4	

0.3		 05.11.2020	 Orfeas	Panagou	(INTRASOFT)	 Addition	of	
Implementation	Aspects	

0.4	 18.11.2020	 Thodoris	Toliopoulos	(AUTH),	Thomas	
Pusztai	(TUW),	Moysis	Symeonides	(UCY),		
Konstantinos	Theodosiou	(UBI)	

Integration	Points	for	
Section	3	

0.5	 27.11.2020	 Konstantinos	Theodosiou(UBI),	Sotiris	
Kousouris	(SUITE5),	Athanasios	Giannetsos	
(DTU)	

Integration	Points	for	
Section	3	

0.6	 02.12.2020	 Orfeas	Panagou	(INTRASOFT)	 Additional	content	in	
section	1,	4,	5	

0.7	 12.12.2020	 Orfeas	Panagou	(INTRASOFT)	 Added	conclusions,	
missing	sections,	table	of	
figures	&	tables	

0.8	 18.12.2020	 Dimitris	Trihinas(UCY)	 Internal	Review	

0.9	 22.12.2020	 Orfeas	Panagou,	Alex	Bensenousi	
(INTRASOFT)	

Address,	review	
comments,	additional	
content,	better	structure	

0.95	 23.12.2020	 Panagiotis	Gouvas,Konstantinos	Theodosiou	
(UBI)	

Second	Internal	Review	

1.0	 24.12.2020	 Orfeas	Panagou	,	Alex	Bensenousi	
(INTRASOFT)	

Final	Version	

	

	

Disclaimer	

This	document	contains	material	and	 information	that	 is	proprietary	and	confidential	 to	 the	RAINBOW	
Consortium	and	may	not	be	copied,	reproduced	or	modified	in	whole	or	in	part	for	any	purpose	without	
the	prior	written	consent	of	the	RAINBOW	Consortium		

Despite	the	material	and	information	contained	in	this	document	is	considered	to	be	precise	and	accurate,	
neither	the	Project	Coordinator,	nor	any	partner	of	the	RAINBOW	Consortium	nor	any	individual	acting	on	
behalf	 of	 any	 of	 the	 partners	 of	 the	 RAINBOW	 Consortium	 make	 any	 warranty	 or	 representation	
whatsoever,	express	or	implied,	with	respect	to	the	use	of	the	material,	 information,	method	or	process	
disclosed	in	this	document,	including	merchantability	and	fitness	for	a	particular	purpose	or	that	such	use	
does	not	infringe	or	interfere	with	privately	owned	rights.	

In	 addition,	 neither	 the	 Project	 Coordinator,	 nor	 any	 partner	 of	 the	 RAINBOW	 Consortium	 nor	 any	
individual	acting	on	behalf	of	any	of	the	partners	of	the	RAINBOW	Consortium	shall	be	liable	for	any	direct,	
indirect	 or	 consequential	 loss,	 damage,	 claim	 or	 expense	 arising	 out	 of	 or	 in	 connection	 with	 any	
information,	material,	advice,	inaccuracy	or	omission	contained	in	this	document.	

	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 3 of 39

Copyright © Rainbow Consortium Partners 2020

Table of Contents

Executive Summary ... 6

1 Introduction ... 7

1.1 Relationship with RAINBOW Deliverables .. 7

1.2 Structure of the deliverable .. 7

2 RAINBOW Software Components ... 9

2.1 RAINBOW Architecture .. 9

2.2 Logically Centralized Orchestrator .. 10
2.2.1 Pre-deployment Constraint Solver ... 10
2.2.2 Deployment Manager .. 11
2.2.3 Orchestration Lifecycle Manager ... 12
2.2.4 Resource Manager ... 14
2.2.5 Resource & Application-level Monitoring .. 14

2.3 MESH Routing Layer ... 15
2.3.1 Mesh Routing Protocol Stack ... 15
2.3.2 Multi-domain sidecar proxy ... 16
2.3.3 Security Enablers .. 16

2.4 Data Management & Analytics Layer .. 21
2.4.1 Data Storage and Sharing ... 21
2.4.2 Analytics Service ... 21

3 RAINBOW Integration and Testing Plan ... 23

3.1 Integration Plan in RAINBOW ... 23

3.2 Unit Testing .. 24

3.3 Integration Testing ... 24

3.4 User Acceptance Testing .. 25

3.5 Requirement Coverage ... 25

3.6 Emulation of Cloud – Fog Resources ... 26

4 Continuous Integration and Quality Assurance Implementation Aspects 28

4.1 Version Control System – Gitlab ... 29

4.2 Build Distribution & Containerization – Docker/K8s ... 30

4.3 Continuous Integration – Gitlab Pipelines ... 31

4.4 Source Code Evaluation – Sonar ... 32

4.5 Issue Tracking – Gitlab .. 33

4.6 Continuous Deployment ... 34

5 Conclusions .. 39
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 4 of 39

Copyright © Rainbow Consortium Partners 2020

List of tables

	
Table	1	Overview	of	Layers,	Components	and	Integration	Points	identified	10
Table	2	Pre-deployment	Constraint	Solver	Integration	Points	..	11
Table	3	Service	Graph	Deployment	Template	Interface	Integration	Points	11
Table	4	Policy	Enforcement	Interface	Integration	Points	...	12
Table	5	Scheduler		Integration	Points	..	13
Table	6	SLO	Manager	Integration	Points	..	13
Table	7	SLO	Controller	Integration	Points	...	13
Table	8	Elasticity	Strategy	Controller	Integration	Points	...	14
Table	9	Resources	Registry	Integration	Points	..	14
Table	10	Monitoring	Interface	INtegration	Points	...	15
Table	11	Mesh	Routing	Interface	Integration	Points	..	16
Table	12	Sidecar	Proxy	Interface	Integration	Points	..	16
Table	13	Data	Ingestion	Integration	Points	...	21
Table	14	Data	Extraction	Integration	Points	..	21
Table	15	Analytics	Service	Integration	Points	...	22
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 5 of 39

Copyright © Rainbow Consortium Partners 2020

List of figures

	
Figure	1	RAINBOW	Reference	Architecture	...	9
Figure	2	Development	Lifecycle	...	29
Figure	3	Gitlab	Repositories	...	30
Figure	4	Continuous	Delivery	in	the	RAINBOW	Framework	...	31
Figure	5	Gitlab	Issues	..	34
Figure	6	Spawned	Gitlab	Runners	on	Kubernetes	Dashboard	..	35
Figure	7	Indicative	Execution	of	pipelines	...	36
Figure	8	Build	Tasks	..	37
Figure	9	Testing	Tasks	..	37
Figure	10	Quality	Tasks	..	37
Figure	11	Indicative	Sonar	output	...	38
	 	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 6 of 39

Copyright © Rainbow Consortium Partners 2020

Executive Summary

The	aim	of	this	deliverable	is	to	provide	a	comprehensive	overview	and	documentation	
report	for	RAINBOW’s	Integration	and	Testing	plan.	This	plan	will	be	used	to	guide	the	
development,	testing	and	integration	effort	that	will	culminate	in	the	future	releases	of	
the	RAINBOW	Framework,	which	also	falls	in	the	scope	of	the	activities	of	Work	Package	
5	(WP5).	
		
Having	the	architecture	proposed	for	the	RAINBOW	framework	as	a	base	reference,	this	
document	presents	 the	 interactions	among	the	 individual	software	components	of	 the	
system,	describing	their	interfaces	and	how	they	will	be	integrated	to	work	as	a	whole.	
		
A	 guideline	 is	 defined	 for	 the	 adequate	 development	 of	 the	 RAINBOW	 software	
components,	 which	 follows	 a	 microservices	 approach.	 It	 includes	 an	 integration	 and	
testing	plan,	 so	each	of	 the	components	should	go	 through	a	set	of	 tests	 (unit	 testing,	
integration	testing,	user	acceptance,	etc.)	and	satisfy	requirements	in	terms	of	interfacing	
and	software	quality	in	order	to	be	considered	ready	for	the	final	integration.	
		
In	 order	 to	 reduce	 the	 number	 of	 bugs,	 RAINBOW	 developments	 will	 follow	 the	
continuous	integration	(CI)	approach	as	a	fundamental	part	of	the	integration	and	testing	
plan	 which	 has	 been	 adopted	 from	 the	 beginning	 of	 the	 project.	 In	 CI,	 the	 software	
developers	are	meant	to	integrate	their	work	continuously.	Each	commit	is	verified	by	an	
automated	 build	 (including	 test)	 to	 detect	 integration	 errors,	 which	 allows	 the	 quick	
detection	 of	 bugs	 and	 therefore,	 to	 develop	 cohesive	 software	 more	 effectively	 and	
rapidly.	In	RAINBOW,	this	task	will	be	automatized	through	the	use	of	GitLab1	pipelines.	
To	ensure	this,	Integration	and	Testing	is	explicitly	decoupled	from	the	development	of	
the	components.		
		
The	software	quality	topic	is	an	integral	part	of	the	integration	strategy,	ensuring	not	only	
that	the	code	functions	as	expected	but	also	that	it	does	it	in	an	efficient	way,	taking	into	
account	 the	quality	of	 the	 code,	 a	 component	often	overlooked,	but	 that	 allows	 faster	
modifications	and	facilitates	team	work	on	the	same	code.	SonarQube2	will	carry	out	this	
task	within	the	RAINBOW	project.	
		
The	deployment	of	the	produced	builds	based	on	the	CICD	processes,	will	be	available	in	
containerized	images	using	Docker.	This	will	allow	the	usage	of	these	components	in	all	
environments	that	support	Docker	and	relevant	technologies,	such	as	Kubernetes	(and	
edge	 enabled	Kubernetes	 releases,	 such	 as	microK8s,	 etc),	Docker	 swarm	and	docker	
compose.	This	approach	will	3also	be	ap4plied	on	the	release	of	the	RAINBOW	framework,	
ensuring	interoperability	and	interfacing	between	the	various	components.	
	

	
1			https://about.gitlab.com/	
2	https://www.sonarqube.org/	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 7 of 39

Copyright © Rainbow Consortium Partners 2020

1 Introduction

The	 software	 integration	 of	 a	 platform	 is	 always	 a	 process	 which	 involves	 following	
several	 multi-disciplinary	 approaches	 when	 designing	 the	 integration	 plan.	 In	 this	
document,	 we	 aim	 to	 present	 the	 importance	 of	 software	 integration,	 the	 challenges	
faced,	and	a	generic	 introduction	to	 the	most	common	methods	and	approaches	used.	
More	 specifically	 the	 document	 aims	 to	 describe	 all	 the	 activities	 of	 Task	5.1	 entitled	
“Technical	Integration	Points	and	Testing	Plan”.	This	task	starts	off	with	an	integrated	
analysis	of	all	sources	available	and	thereafter	defines	necessary	interfaces	to	integrate	
components.	
	

1.1 Relationship with RAINBOW Deliverables

This	 deliverable	 is	 built	 on	 the	 foundation	 of	 D1.2,	 which	 provides	 a	 concrete	
documentation	of	the	current	version	of	the	reference	architecture	and	key	technologies	
supported	 by	 RAINBOW	 and	 provides	 an	 initial	 description	 of	 the	 components	
comprising	 the	 RAINBOW	 framework.	 To	 this	 end,	 D5.1	 extends	 the	 RAINBOW	
documentation	 by	 providing	 a	 report	 for	 the	 integration	 points	 of	 the	 various	
components,	 as	well	 as	an	outline	of	 the	processes	and	 timelines	 that	 the	project	will	
follow	for	its’	development,	testing	and	integration	lifecycles.	The	information	presented	
in	this	deliverable	will	serve	as	a	guideline	for	the	development	effort	pertaining	to	the	
integrated	RAINBOW	platform,	which	will	be	presented	 in	D5.2.	Additionally,	 the	user	
acceptance	testing	portion	of	the	testing	bed	that	RAINBOW	will	rely	upon,	is	influenced	
and	built	on	the	work	done	for	D1.3.	

1.2 Structure of the deliverable

This	deliverable	presents	the	technical	integration	points	and	testing	plan	of	RAINBOW.	
More	specifically,	the	deliverable	is	structured	as	follows.	
	
Section	2	presents	the	building	blocks	upon	which	the	integration	and	testing	plan	was	
built	on.		
	
Section	3	presents	a	short	introduction	of	the	architecture	based	on	D1.1	and	the	various	
integration	points	between	different	components	that	will	occur.	
	
Section	4	presents	the	testing	procedures	that	we	intend	to	follow	in	this	project	and	the	
integration	 plan,	 describing	 the	 developing	 process	 as	well	 as	 the	 testing	 and	 quality	
assurance	scheduling.	
	
Section	5	is	devoted	on	the	implementation	guidelines	and	the	technical	resources	that	
are	 used	during	 the	development	 and	deployment	 of	 the	different	mechanisms.	More	
specifically,	the	already	agreed	and	setup	development	circle	is	presented	along	with	best	
practices	that	are	adopted.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 8 of 39

Copyright © Rainbow Consortium Partners 2020

		
Finally,	Section	6	presents	conclusions	and	outlines	directions	for	future	work.	
	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 9 of 39

Copyright © Rainbow Consortium Partners 2020

2 RAINBOW Software Components

2.1 RAINBOW Architecture

Following	up	the	work	done	on	the	Reference	RAINBOW	architecture,	as	presented	in	
D1.2,	 this	 deliverable	 aims	 to	 further	 clarify	 the	 various	 interactions	 and	 integrations	
between	the	components	described	in	the	architecture.		As	such,	the	next	section	of	this	
deliverable	focuses	on	the	individual	layers	as	previously	described	in	D1.2,	as	well	as	
their	 individual	 components	and	how	they	 interact	with	each	other,	either	with	other	
components	in	the	same	layer	or	components	in	different	layers.		
	
As	 seen	 in	 Figure	 1,	 the	 3	main	 layers	 of	 components,	 as	 provided	by	 the	High	 Level	
architecture	 (found	 in	 D1.2),	 are	 the	 Modelling	 Layer,	 the	 Logically	 Centralized	
Orchestrator,	and	the	MESH	Routing	Layer.	As	such,	this	report	also	focuses	on	these	3	
main	entities	of	the	RAINBOW	platform	and	the	interactions	between	them.		

	
Figure	1	RAINBOW	Reference	Architecture	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 10 of 39

Copyright © Rainbow Consortium Partners 2020

In	the	next	section,	the	components	of	these	main	entities,	and	where	applicable,	their	
subcomponents,	are	listed	and	their	integration	points	are	presented.		These	integration	
points	are	coded	with	the	initials	of	the	main	component	that	they	logically	belong	to,	as	
well	as	a	number.	In	future	versions	we	will	include	these	reference	codes	to	match	these	
integration	points	with	specific	 integration	tests	and	processes	that	occur	through	the	
RAINBOW	 Integrated	 platform	 lifecycle.	 In	 addition	 to	 the	 reference	 code,	 a	 short	
description	of	each	component	is	 included,	the	core	function,	the	type	of	 interface,	the	
constraints,	 inputs	 as	well	 as	 the	 planned	 interaction	with	 other	 components.	 	 These	
interactions	are	in	line	with	what	has	been	previously	described	in	D1.2	concerning	the	
reference	architecture.	An	overview	of	these	integration	points	is	presented	on	Table	X.X	
below,	while	the	next	section	goes	over	the	various	intra-layer	communications	in	more	
detail.	
	
Layer	 Component	 Reference	Code	
Logically	 Centralized	
Orchestrator	

Pre-deployment	
Constraint	Solver	

CS_01	

Deployment	Manager	 DM_01,	DM_02	

Orchestration	 Lifecycle	
Manager	

OLM_01,	 OLM_02,	 OLM_03,	
OLM_04	

Resource	Manager	 RM_01	
Resource	 Application	
Monitoring	

RAM_01	

MESH	Routing	Layer	 Mesh	 Routing	 Protocol	
Stack	

MRP_01	

Multi-domain	 sidecar	
proxy	

MSP_01	

Security	Enablers	 SE_01	
Data	 Management	 &	
Analytics	Layer	

Data	Storage	&	Sharing	 DSS_01	
Analytics	Service	 AS_01	

Table	1	Overview	of	Layers,	Components	and	Integration	Points	identified	

2.2 Logically Centralized Orchestrator

2.2.1 Pre-deployment Constraint Solver

The	pre-deployment	Constraint	Solver	is	responsible	for	creating	a	placement	plan	which	
enforces	constrains	placed	on	the	deployment.	

	

Name		 Pre-deployment	Constraint	Solver	
Description	 Generates	a	pre-deployment	placement	plan	that	is	based	on	

the	provided	requirements	of	the	Service	Graph	and	the	
offered	available	resources	

Reference	Code	 CS_01	
Responsibilities	 UBI	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 11 of 39

Copyright © Rainbow Consortium Partners 2020

Function	 Generates	a	pre-deployment	placement	plan	
Subsystem	 N/A	
Type	of	
interface	

REST	

Constraints	 A	token	must	be	provided	along	with	the	input.	
Inputs	 JSON	
Interaction	
with	
components	

N/A	

Table	2	Pre-deployment	Constraint	Solver	Integration	Points	

2.2.2 Deployment Manager

The	deployment	manager	is	responsible	for	creating,	deploying	and	maintaining	service	
graph	templates.	
	

Name		 Service	Graph	Deployment	Template	Interface	
Description	 A	Service	Graph	Deployment	Template	is	been	analysed	and	

after	the	needed	interactions	with	the	corresponding	
components,	materializes	a	placement	plan	to	an	actual	
deployment.	

Reference	Code	 DM_01	
Responsibilities	 UBI	
Function	 Materializes	a	placement	plan	to	an	actual	deployment.	
Subsystem	 N/A	
Type	of	
interface	

REST	

Constraints	 A	valid	token	must	be	provided	along	with	the	input	with	the	
correct	access	rights.	

Inputs	 JSON	
Interaction	
with	
components	

Pre-Deployment	Constraint	Solver,	Orchestration	Lifecycle	
Manager,	Orchestration	Repository	

Table	3	Service	Graph	Deployment	Template	Interface	Integration	Points	

Name		 Policy	Enforcement	Interface	
Description	 Receives	Policies	and	materialize	them	to	actual	enforcement	

policies	to	the	corresponding	Service	Graph.	
Reference	Code	 DM_02	
Responsibilities	 UBI	
Function	 Materializes	a	policy	to	actual	enforcements	on	the	Service	

Graph.	
Subsystem	 N/A	
Type	of	
interface	

REST	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 12 of 39

Copyright © Rainbow Consortium Partners 2020

Constraints	 A	valid	token	must	be	provided	along	with	the	input	with	the	
correct	access	rights.	

Inputs	 JSON	
Interaction	
with	
components	

Pre-Deployment	Constraint	Solver,	Orchestration	Lifecycle	
Manager,	Orchestration	Repository	
	

Table	4	Policy	Enforcement	Interface	Integration	Points	

2.2.3 Orchestration Lifecycle Manager

The	Orchestration	Lifecycle	Manager	has	the	following	main	responsibilities:	
• Coordination	 of	 the	 deployment	 of	 service	 graphs	 (applications)	 in	 a	 transactional	

manner.	
• Coordination	of	the	RAINBOW	regions	(federated	approach).	
• Checking	 of	 Service	 Level	 Objectives	 (SLOs)	 that	 have	 been	 applied	 to	 the	 deployed	

applications.	
• Execution	of	corrective	actions	(e.g.,	elasticity	strategies	or	security	actions)	 in	case	of	

violated	SLOs.	

Since	 the	 RAINBOW	 implementation	 is	 based	 on	 Kubernetes,	 the	 interfaces	 of	 the	
Orchestration	Lifecycle	Manager	are	provided	over	the	Kubernetes	API5.	
	

Name		 Scheduler	
Description	 The	Scheduler	is	responsible	for	assigning	the	microservices	

(pods)	of	all	applications	to	the	nodes	they	will	execute	on.		
The	Scheduler	does	expose	a	public	interface	directly.	
Instead,	it	observes	changes	on	the	Pods	interface	provided	
by	the	Kubernetes	API3	to	be	notified	when	a	pod	needs	to	be	
(re-)scheduled.	
In	addition	to	watching	pods,	the	Scheduler	uses	service	
graph	information	from	the	Deployment	Manager	and	
resource	information	from	the	Resource	Manager	to	fulfill	its	
purpose.	

Reference	Code	 OLM_01	
Responsibilities	 TUW	
Function	 Orchestration	
Subsystem	 	
Type	of	
interface	

Indirect	REST	(JSON	and	YAML)	–	component	observes	
changes	of	Pod	resources	through	the	Kubernetes	API	

Constraints	 The	scheduler	interface	is	not	directly	accessible.	
Inputs	 Microservices	(pods),	service	graph,	resources	

	
	
3	https://kubernetes.io/docs/reference/using-api/api-concepts/	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 13 of 39

Copyright © Rainbow Consortium Partners 2020

Interaction	
with	
components	

Deployment	Manager	and	Resource	Manager	

Table	5	Scheduler		Integration	Points	

Name		 SLO	Manager	
Description	 The	SLO	Manager	allows	Service	Developers	to	register	

supported	Service	Level	Objectives	and	Service	Providers	to	
configure	these	SLOs	for	concrete	application	deployments.	

Reference	Code	 OLM_02	
Responsibilities	 TUW	
Function	 Orchestration	
Subsystem	 SLO	Enforcement	
Type	of	
interface	

REST	(JSON	and	YAML)	–	via	Kubernetes	API	

Constraints	 A	Service	Developer	must	be	authenticated	and	have	
privileges	to	edit	the	corresponding	service	graph.	
A	Service	Provider	must	be	authenticated	and	have	privileges	
on	the	namespace,	where	the	application	is	deployed.	

Inputs	 SLO	Definitions,	SLO	Mappings	
Interaction	
with	
components	

SLO	Controller	

Table	6	SLO	Manager	Integration	Points	

	
Name		 SLO	Controller	
Description	 An	SLO	Controller	is	responsible	for	checking	all	instances	of	

a	particular	type	of	SLO	and	triggering	corrective	actions	in	
case	of	violations.	
An	SLO	Controller	does	not	expose	a	public	interface.	Instead,	
it	observes	changes	on	resources	of	the	SLO	that	it	is	
responsible	for.	

Reference	Code	 OLM_03	
Responsibilities	 TUW	
Function	 Orchestration	
Subsystem	 SLO	Enforcement	
Type	of	
interface	

Indirect	REST	(JSON	and	YAML)	–	component	observes	
changes	of	SLO	Mapping	resources	through	the	Kubernetes	
API	

Constraints	 This	interface	is	not	directly	accessible.	
Inputs	 SLO	Mappings	
Interaction	
with	
components	

SLO	Manager,	Elasticity	Strategy	Controllers	

Table	7	SLO	Controller	Integration	Points	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 14 of 39

Copyright © Rainbow Consortium Partners 2020

Name		 Elasticity	Strategy	Controller	
Description	 An	Elasticity	Strategy	Controller	is	responsible	for	carrying	

out	corrective	actions	that	result	from	the	violation	of	an	
SLO.	
An	Elasticity	Strategy	Controller	does	not	expose	a	public	
interface.	Instead,	it	observes	changes	of	the	resources	it	is	
responsible	for.	

Reference	Code	 OLM_04	
Responsibilities	 TUW	
Function	 Orchestration	
Subsystem	 SLO	Enforcement	
Type	of	
interface	

Indirect	REST	(JSON	and	YAML)	–	component	observes	
changes	of	resources	through	the	Kubernetes	API	

Constraints	 This	interface	is	not	directly	accessible.	
Inputs	 Elasticity	Strategy	Parameters	
Interaction	
with	
components	

SLO	Controller	

Table	8	Elasticity	Strategy	Controller	Integration	Points	

2.2.4 Resource Manager

The	Resource	Manager	maintains	an	overview	of	the	available	and	used	resources	on	the	
nodes	of	the	RAINBOW	region.		
	

Name		 Resources	Registry	
Description	 The	Resources	Registry	provides	information	on	the	

resources	available	on	a	particular	node.	
Reference	Code	 RM_01	
Responsibilities	 TUW	
Function	 Orchestration	
Subsystem	 	
Type	of	
interface	

REST	(JSON	and	YAML)	–	via	Kubernetes	API	

Constraints	 This	interface	is	only	accessible	for	RAINBOW	components	
(e.g.,	scheduler,	SLO	controller).	It	is	not	accessible	to	users.	

Inputs	 Resource	Usage	Metrics	
Interaction	
with	
components	

Resource	Monitoring	

Table	9	Resources	Registry	Integration	Points	

2.2.5 Resource & Application-level Monitoring

The	Resource	&	Application-level	monitoring	component	is	responsible	for	monitoring	
resources	and	applications	deployed	in	the	RAINBOW	infrastructure.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 15 of 39

Copyright © Rainbow Consortium Partners 2020

	
Name		 Monitoring	Interface	
Description	 The	Monitoring	interface	provides	access	to	metrics	collected	

from	the	RAINBOW	infrastructure	and	the	running	Fog	
services	to	other	components	of	the	RAINBOW	platform	
	

Reference	Code	 RAM_01	
Responsibilities	 	

Implementation:	UCY	
Usage:	TUW,	AUTH,	UCY	

Subsystem	 	
State	 User	Interface,	Access	Security,	etc.	
Type	of	
interface	

REST,	PUB/SUB	protocol(e.g.,	KAFKA)			

Constraints	 Requests	to	the	service	should	be	authenticated	
Requests	and	Responses	are	JSON	UTF-8	encoding	

Inputs	 Configurations	
Interaction	
with	
components	

Orchestrator	
Analytics	Service	
Storage	Service	

Table	10	Monitoring	Interface	INtegration	Points	

2.3 MESH Routing Layer

2.3.1 Mesh Routing Protocol Stack

The	Mesh	Routing	Protocol	Stack	is	responsible	for	creating	and	maintaining	the	Mesh	
network	on	which	the	RAINBOW	components	are	placed.	
	

Name		 Mesh	Routing	Ιnterface	
Description	 Through	the	interface,	the	nodes	will	be	able	to	identify,	as	

also	to	elect	the	cluster	heads,	establish	the	overlay	and	
perform	path	discovery.	

Reference	Code	 MRP_01	
Responsibilities	 UBI	
Function	 Mesh	routing	services	
Subsystem	 N/A	
Type	of	
interface	

Custom	Protocol,	Rest	

Constraints	 The	interface	will	be	accessible	only	from	the	Rainbow	
Components	and	when	someone	is	inside	the	mesh.	

Inputs	 Configurations	
Interaction	
with	
components	

Cluster-head	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 16 of 39

Copyright © Rainbow Consortium Partners 2020

Table	11	Mesh	Routing	Interface	Integration	Points	

2.3.2 Multi-domain sidecar proxy

The	Multi-domain	 sidecar	proxy	 is	 a	node-level	 component	 responsible	 for	 extracting	
metrics	and	adjusting	high	level	configurations	for	nodes.	
	

Name		 Sidecar	Proxy	Interface	
Description	 Through	this	interface,	the	sidecar	proxy	is	configured	in	

order	to	execute	possible	adjustments	on	the	node,	properly	
extract	metrics	and	many	other	responsibilities	that	may	
have.	

Reference	Code	 SP_01	
Responsibilities	 UBI	
Function	 Configure	Sidecar	Proxy	
Subsystem	 N/A	
Type	of	
interface	

Key/Value	storage,	pub/sub	(e.g.,	Kafka)	

Constraints	 The	interface	will	be	accessible	only	from	the	Rainbow	
internal	components.	

Inputs	 Configuration	as	JSON	
Interaction	
with	
components	

Cluster-head,	Orchestrator,	Resource	&	Application-level	
Monitoring	

Table	12	Sidecar	Proxy	Interface	Integration	Points	

2.3.3 Security Enablers

The	purpose	of	the	RAINBOW	security	and	trust	enablers	is	to	provide	enhanced	remote	
attestation	 mechanisms	 towards	 the	 secure	 composability	 of	 fog	 environments,	
encompassing	a	broad	array	of	mixed-criticality	services	and	applications.	The	main	goal	
is	to	allow	the	creation	of	privacy-	and	trust-aware	service	graph	chains	(managed	by	the	
Orchestrator	and	established	by	the	Deployment	Manager)	through	the	provision	of	S-
ZTP	 functionalities:	 fog	 nodes	 adhere	 to	 the	 compiled	 attestation	 policies	 by	 providing	
verifiable	 evidence	 on	 their	 configuration	 integrity	 and	 correctness.	 The	 necessary	
interfaces	 and	 agents,	 for	 providing	 the	 following	 functionalities	 (as	 defined	 also	 in	
Deliverable	D2.1),	will	be	implemented:	

• Secure	Enrolment	of	a	newly	joined	(or	deployed)	fog/edge	node	for	verifying	its	
correct	configuration	and	trusted	state.	This	is	deemed	necessary	before	allowing	
the	node	to	enter	a	cluster	(or	a	mesh	network)	and	establish	the	necessary	key	
material	for	the	subsequent	operations;

• Zero-touch	 Configuration	 and	 Operational	 Correctness	 for	 providing	 the	
necessary	guarantees	that	a	VF	works	correctly	both	after	deployment	(i.e.,	boot-
up	–	 load-time	integrity)	but	also	throughout	 its	operational	 life-cycle	(runtime	
integrity);

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 17 of 39

Copyright © Rainbow Consortium Partners 2020

• Cryptographic	 Key	 Management	 responsible	 for	 providing	 all	 the	 necessary	
interfaces	for	the	secure	key	establishment	and	key	management	functionalities	
needed	by	all	RAINBOW	internal	components	and	fog/edge	nodes.

Name		 Secure	Enrolment	Agent	
Description	 The	 Secure	 Enrolment	 Agent	 provides	 the	

necessary	 interfaces	 by	 which	 a	 (newly	
joined)	 fog	 node	 (or	 a	 deployed	 VF)	 can	
report,	 in	 a	 trusted	 way,	 the	 status	 of	 its	
configuration.	This	entails	the	extraction	of	
a	 “quote”,	 by	 leveraging	 the	 attached	
trusted	 component	 (i.e.,	 TPM),	 reflecting	
the	 node’s	 current	 integrity	measurement	
list	 to	 be	 verified	 against	 the	 correct	
configuration	 policies	 including	 the	
reference	measurements	of	the	whitelist	(to	
be	loaded)	of	application	binaries.		

Reference	Code	 SE_01	
Responsibilities	 DTU	
Function	 Zero-touch	 Configuration	 Integrity	

Verification	(CIV)	through	the	provision	of	
Attestation	 by	 Quote	 and	 Attestation	 by	
Proof	interfaces	

Subsystem	 Sidecar	Proxy	Interface,	Control-Flow	
Attestation	Agent	

Type	of	interface	 Custom	Protocol,	REST	
Constraints	 The	 Extended	 Authorization	 (EA)	 policy	

digest,	 which	 reflects	 the	 trusted	 state	 in	
which	 the	 newly	 joined	 or	 deployed	 fog	
node	 must	 be	 found	 to	 (i.e.,	 integrity	
reference	 measurement),	 needs	 to	 be	 to	
correctly	 deployed	 to	 the	 (initial)	 service	
graph	 chain,	 as	 part	 of	 the	 Service	Graph	
Deployment	Template	Interface.		

Inputs	 EA	Policy	Digest,	Attestation	key	Template,	
Configuration	Integrity	Verification	Policy	

Interaction	with	components	 Service	Graph	Deployment	Template	
Interface,	
Policy	Validator,	
Sidecar	proxy	Interface,	
Orchestrator	or	Cluster-Head	(acting	as	
the	Verifier),	
Key	Management	Interface	

	
Name		 Control-Flow	Attestation	Agent	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 18 of 39

Copyright © Rainbow Consortium Partners 2020

Description	 The	 Control-Flow	 Attestation	 Agent	 is	
responsible	 for	 attesting	 the	 correct	
executional	 behavioural	 properties	 of	 a	
deployed	VF/service,	upon	request	from	the	
Orchestrator	 or	 the	 cluster-head.	 This	
agent	 leverages	 the	 Attestation	 by	 Quote	
and	Attestation	by	Proof	 interfaces,	of	 the	
Secure	Enrolment	Agent,	in	order	to	verify	
the	correct	execution	path	of	a	deployed	VF;	
all	the	correct	execution	paths	(i.e.,	Control-
flow	 Graphs)	 of	 interest	 have	 been	
identified	 to	 act	 as	 the	 baseline	 of	 the	
normal	 sequence	 of	 states	 against	 which	
the	 run-time	 control-flow	 footprints	 (of	 a	
VF)	will	be	assessed.	Any	deviation	from	the	
legitimate	CFGs	results	in	an	unrecognized	
measurements	 which	 is	 indication	 of	 a	
possible	VF	exploitation.	

Reference	Code	 SE_02	
Responsibilities	 UBI/DTU/POLITO	
Function	 Operational	Correctness	
Subsystem	 Sidecar	Proxy	Interface	
Type	of	interface	 REST,	KAFKA	
Constraints	 Only	 specific	 executional	 behavior	

properties	 (i.e.,	 functions)	 of	 a	 deployed	
node	can	be	attested	and	not	the	entire	VF	
codebase.	

Inputs	 Attestation	 Challenge,	 Extracted	 Contol-
flow	Graph	

Interaction	with	components	 Orchestrator	or	Cluster-Head	(acting	as	
the	Verifier),	
Monitoring	Interface,	
Multi-level	Detailed	Tracing	Agent,	
Sidecar	Proxy	Interface,	
Key	Management	Interface	

	
Name		 Multi-level	Detailed	Tracing	Agent	
Description	 The	 Multi-level	 Detailed	 Tracing	 Agent	

provides	 the	 	 interfaces	 for	 monitoring	 a	
node’s	runtime	data	and	execution	graphs	
necessary	 for	 tracing	 the	 control-	 and	
information-flow	 execution	 paths	 (i.e.,	
CFGs)	 needed	 by	 the	 Control-flow	
Attestation	Agent.	This	is	achieved	through	
the	deployment	of	eBPF	execution	hooks,	as	
low-level	behavioural	properties.	The	goal	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 19 of 39

Copyright © Rainbow Consortium Partners 2020

of	 this	 tracing	 is	 to	 monitor	 system	 calls,	
produce	the	necessary	CFGs	and	extract	the	
respective	attestation	report.	In	the	case	of	
a	 failed	 attestation	 report,	 the	 RAINBOW	
Orchestrator	 will	 increase	 the	 level	 of	
(node)	 monitoring	 –	 through	 the	 Sidecar	
Proxy	 Interface	 –	 in	 order	 to	 collect	
additional	evidence	and	information	on	the	
incident	 for	 the	 assistance	 in	 finding	 the	
province	 of	 the	 attack	 as	 well	 as	 in	 the	
development	 of	 new	 enforceable	 policies	
that	 should	 be	 able	 to	 catch	 this	 newly	
identified	threat.		

Reference	Code	 SE_03	
Responsibilities	 UBI/DTU	
Subsystem	 Control-Flow	Attestation	Agent	
Function	 Real-time	Node	Data	and	Execution	Stream	

processing	and	Monitoring	
Type	of	interface	 Custom	protocol	
Constraints	 This	 interface	will	be	accessible	only	 from	

the	 sidecar	 proxy	 interface	 that	 can	 be	
invoked	 by	 the	 RAINBOW	 Orchestrator	
when	a	more	detailed	tracing	is	required	

Inputs	 Configurations	
Interaction	with	components	 Sidecar	Proxy	Interface,	

Monitoring	Interface	
	
Name		 Direct	Anonymous	Attestation	Agent	
Description	 The	DAA	Agent	is	responsible	for	providing	

the	 necessary	 interfaces	 towards	 the	
creation	 of	 trusted	 and	 privacy-aware	
mesh	 overlay	 network	 paths	 between	
connected	nodes.	It	entails	the	support	for	
the:	 (i)	 anonymous	 communication	
between	 fog/edge	 nodes	 on	 top	 of	 the	
already	 established	 CJDNS	mesh	 network,	
(ii)	 self-certification	of	 the	respective	DAA	
and	 ephemeral	 DH	 keys,	 and	 (iii)	
ascertation	 of	 a	 platform’s	 state	 as	
recorded	 by	 the	 Control-Flow	 Attestation	
Agent.	

Reference	Code	 SE_04	
Responsibilities	 DTU	
Subsystem	 Mesh	Routing	interface	
Type	of	interface	 Custom	Protocol	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 20 of 39

Copyright © Rainbow Consortium Partners 2020

Constraints	 Direct	Anonymous	Attestation	 is	 based	on	
the	 use	 of	 Trusted	 Platform	 Modules	
(TPMs)	that	should	be	attached	to	each	one	
of	 the	 deployed	 fog/edge	 nodes.	
Furthermore,	 anonymous	 communication	
will	be	provided	from	the	CJDNS	Level	3	and	
onwards.	

Inputs	 Privacy	Policies	
Interaction	with	components	 Orchestrator,	

Secure	Enrolment,	
Control-Flow	Attestation	Agent,		
Mesh	Routing	Interface,	

	
Name		 Key	Management	Interface	
Description	 The	 Key	 Manager	 is	 responsible	 for	

providing	 all	 the	 necessary	 interfaces	 for	
the	 secure	 key	 establishment	 and	 key	
management	 functionalities	 needed	 by	 all	
RAINBOW	 internal	 components	 and	
fog/edge	 nodes.	 More	 specifically,	 this	
entails	 the	 establishment	 of	 the:	 (i)	
Attestation	 key	 (to	 be	 used	 in	 the	 Secure	
Enrolment),	 (ii)	 DAA	 key,	 (iii)	 ephemeral	
DH	 key,	 and	 (iii)	 CJDNS	 secure	
communication	keys.	

Reference	Code	 SE_05	
Responsibilities	 IFAT	
Subsystem	 All	 RAINBOW	 internal	 components	 –	

especially	all	artefacts	related	to	the	Mesh	
Routing	Protocol	Stack	

Type	of	interface	 REST	
Constraints	 RAINBOW	Cryptographic	Key	Management	

Systems	 (CKMS)	 is	 based	 on	 the	 use	 of	
Trusted	 Platform	 Modules	 (TPMs)	 that	
should	 be	 attached	 to	 each	 one	 of	 the	
deployed	fog/edge	nodes.	

Inputs	 Key	Management	Policies	
Interaction	with	components	 Orchestrator,	

Secure	Enrolment,	
Control-Flow	Attestation	Agent,		
Mesh	Routing	Interface,	
Service	Graph	Deployment	Template	
Interface	

	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 21 of 39

Copyright © Rainbow Consortium Partners 2020

2.4 Data Management & Analytics Layer

2.4.1 Data Storage and Sharing

The	purpose	of	 the	Data	Storage	and	Sharing	component	 is	 to	store	the	collected	data	
from	 the	 different	 RAINBOW	 components	 and	 concurrently	 allow	 any	 authorized	
components	to	quickly	have	access	to	stored	data	either	from	the	local	database	instance	
or	 from	a	set	of	 instances.	Another	 important	part	of	 the	component	 is	 to	support	the	
overlay	network	components	by	providing	quick	cache	mechanisms	for	routing.	
The	data	storage	component	will	comprise	a	distributed	in-memory	database	and	a	set	
of	interfaces	to	connect	with	said	database	along.	
	

Name		 Data	Ingestion	
Description	 The	interface	from	which	the	requesting	components	send	

data	to	be	stored	in	the	database.	
Reference	Code	 DSS_01	
Responsibilities	 AUTH	
Subsystem	 Local	database	instance	
Type	of	
interface	

Socket	

Constraints	 Authentication	of	the	requesting	component	
Inputs	 JSON	of	input	data	
Interaction	
with	
components	

Any	component	that	needs	to	store	data	in	the	local	database	

Table	13	Data	Ingestion	Integration	Points	

Name		 Data	Extraction	
Description	 The	interface	from	which	the	requesting	components	extract	

data	from	the	database.	
Reference	Code	 DSS_02	
Responsibilities	 AUTH	
Subsystem	 Local	database	instance,	Global	database	client	instance	
Type	of	
interface	

Socket	

Constraints	 Authentication	of	the	requesting	component	
Inputs	 JSON	of	requesting	data	
Interaction	
with	
components	

Any	component	that	needs	to	extract	data	from	the	database,	
either	from	a	local	instance	or	globally.	

Table	14	Data	Extraction	Integration	Points	

2.4.2 Analytics Service

The	Analytics	service	is	responsible	for	exposing	an	API	through	which	other	services	can	
interact	with	in	order	to	collect	monitoring	information	from	the	RAINBOW	platform.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 22 of 39

Copyright © Rainbow Consortium Partners 2020

	
Name		 Analytics	Service	API	
Description	 The	Analytics	Service	API	provides	access	to	analytic	results	

from	the	collected	monitoring	information	to	the	
components	of	the	RAINBOW	platform.	

Reference	Code	 AS_01	
Responsibilities	 	

Implementation:	UCY	
Usage:	TUW,	SUITE5	

Subsystem	 	
Type	of	
interface	

REST,	PUB/SUB	protocol(e.g.	KAFKA)	

Constraints	 Requests	to	the	service	should	be	authenticated	
Requests	and	Responses	are	JSON	UTF-8	encoding		
	

Inputs	 A	set	of	Analytic	Queries	
Interaction	
with	
components	

Resource	Manager	
	Orchestration	Lifecycle	Manager	
Operational	Dashboards	
Table	15	Analytics	Service	Integration	Points	

	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 23 of 39

Copyright © Rainbow Consortium Partners 2020

3 RAINBOW Integration and Testing Plan

Regarding	the	Integration	and	Testing	plan,	the	methodology	used	is	based	on	the	STEP	
(Systematic	Test	and	Evaluation	process)	approach.	The	core	idea	of	the	STEP	approach	
is	that	the	main	focus	is	spent	on	designing	an	overall	testing	plan,	with	the	idea	being	
that	 early	 testing	 provides	 prevention	 potential,	 i.e.	 that	 software	 shortcomings	 and	
issues	can	be	resolved	before	 they	occur	during	 the	 initial	 testing	stages.	As	such,	 the	
guideline	of	the	methodology	is	to	design	the	testing	framework	and	the	corresponding	
test	use	cases	as	early	as	possible,	based	on	the	specific	objectives	and	requirements	of	
the	software	in	question,	and	not	wait	for	the	actual	software	design	process	to	be	over	
and	the	implementation	process	to	have	begun.	
	
A	 similar	 approach	 is	 followed	 in	 RAINBOW,	 where	 the	 testing	 of	 the	 individual	
components	(unit	testing)	will	be	done	early	in	the	project,	with		the	next	step	being	the	
integration	tests.	These	integration	tests	will	also	be	done	before	the	release	of	the	first	
iteration	 of	 the	 integrated	 RAINBOW	 platform,	 using	 simulated	 environments	 and	
interconnections,	as	necessary.	
	
In	the	next	section,	an	overview	of	each	of	the	individual	“building	blocks”	of	the	overall	
testing	plan	and	testing	actions	that	will	be	completed	in	RAINBOW	are	presented.		
	

3.1 Integration Plan in RAINBOW

RAINBOW	 follows	 a	 specific	 approach	 in	 order	 to	 implement	 the	 mechanisms	 that	
constitute	 the	RAINBOW	 framework.	RAINBOW	development	 is	 a	 continuous	 process	
which	contains	all	required	discrete	steps	that	re-assure	quality	during	the	entire	lifetime	
of	the	project.	As	mentioned	earlier,	the	RAINBOW	platform	development	will	take	part	
in	 3	 development	 cycles,	with	 the	 first	 step	 of	 each	 cycle	 being	 the	 development	 and	
testing	of	each	individual	component,	and	the	second	step	being	the	integration	of	the	
components	into	the	RAINBOW	framework.	However,	as	described	earlier,	the	tasks	that	
are	derived	from	these	steps	will	run	in	parallel	with	simulated	environment	usage	being	
substituted	for	the	actual	components	and	integration	points	as	they	become	available.	
To	better	handle	the	workload,	the	individual	layers	of	the	architecture	(as	presented	in	
the	first	section	of	this	document)	and	their	individual	integration	points	will	be	the	focus	
of	each	cycle,	with	the	first	being	the	Logically	Centralized	Orchestrator,	followed	up	by	
the	Mesh	Routing	Layer	and	then	the	Data	Management	Layer.		
	
	In	short,	the	milestones	of	the	integrated	RAINBOW	platform,	given	the	time	plan	of	work	
in	the	various	WPs,	are	the	following:	
	

• M15:	First	 release	of	 individual	 components	per	 layer	of	 the	architecture	 (WP2,	WP3,	
WP4).	

• 	M18:	First	integrated	version	with	release	of	components	in	M15	(WP5).	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 24 of 39

Copyright © Rainbow Consortium Partners 2020

	
• M27:	Final	 release	of	 individual	components	per	 layer	of	 the	architecture	 (WP2,	WP3,	

WP4).	
• 	M27:	Second	integrated	version	with	release	of	components	in	M27	based	on	feedback	

of	previous	release(WP5)
• M36:	Final	integrated	version	with	release	of	components	in	M27	based	on	improvements	

and	feedback	derived	from	demonstrators	(WP5).

3.2 Unit Testing

The	 main	 objective	 of	 this	 section	 is	 the	 (non-exhaustive,	 given	 that	 software	
development	 runs	 in	 parallel)	 description	 of	 the	 applied	 unit	 tests	 in	 the	 RAINBOW	
integrated	framework.	Unit	tests	are	the	tool	to	test	the	functional	modules	of	software.	
In	the	case	of	the	RAINBOW	integrated	framework	unit	tests	will	guarantee	the	quality	of	
the	particular	layers	developed	in	the	corresponding	work	packages.	A	suitable	unit	test	
is	applied	to	the	piece	of	code	without	any	dependencies	on	other	code	parts.	Therefore,	
the	 developer	 of	 each	 layer	 will	 test	 the	 components	 by	 means	 of	 unit	 tests	 before	
integrating	them	into	the	full	application.	These	unit	tests	will	be	the	first	of	many	tests	
to	be	implemented	for	individual	components	and	will	run	in	parallel	with	the	integration	
testing.		
	

3.3 Integration Testing

After	the	development	of	all	individual	components	of	the	RAINBOW	platform	is	finished,	
the	 system	 is	 ready	 to	 be	 integrated	 and	 tested	 in	 order	 to	 check	 if	 it	 meets	 its	
specifications.	This	kind	of	 testing	 is	 referred	 to	 as	 Integration	Testing,	 as	 it	 tests	 the	
integration	of	the	units	into	the	overall	system.	More	specifically,	integration	testing	aims	
to	diagnose	errors	in	the	design	of	the	system	or	the	specifications	in	the	system’s	units,	
as	well	as	the	interfacing	between	them.

If	the	different	units	of	a	system	are	tested	in	combinations,	eventually	all	the	units	
comprising	 a	 process	 will	 be	 tested	 together.	 The	 discovered	 errors	 during	 the	
integration	testing	are	mainly	related	to	the	interfaces	between	them,	as	all	units	have	
already	been	tested	separately	during	the	unit	testing	portion	of	the	testing	process.		

The	most	 common	strategies	 that	an	 integrator	can	use	 to	perform	 integration	
testing	are	the	following	:	

• The top-down approach achieves step by step verification of the interfaces among
components that operate under a common control strategy. This control strategy dictates the
order of development, integration and testing. Top-down integration interleaves component
scope testing and integration of a system of components.

• The bottom-up approach achieves step by step verification of the interfaces between tightly
coupled components. It interleaves component scope testing and integration of system
components. Components with the least number of dependencies are tested first.

• The hybrid approach uses both the top-down and the bottom-up approach and performs
testing with functional data along with control flow paths. Firstly, the inputs for functions are

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 25 of 39

Copyright © Rainbow Consortium Partners 2020

integrated in the bottom-up pattern discussed above. The outputs for each function are then
integrated in the top-down manner.

For	RAINBOW,	the	hybrid	approach	was	chosen,	which	allows	for	multitarget	testing	to	
occur	 in	 parallel.	 This	 approach	 may	 require	 potential	 software	 components	 and	
subcomponents	to	be	simulated	for	the	sake	of	testing	before	they	become	operational,	
but	overall	allows	for	a	greater	test	coverage	of	the	overall	framework.	

3.4 User Acceptance Testing

Acceptance	Tests	 are	 usually	 tests	 created	 by	 business	 customers	 and	 expressed	 in	 a	
business/scientific	 domain	 language.	 These	 are	 high-level	 tests	 to	 verify	 the	
completeness	 of	 stories	 'played'	 during	 any	 sprint/iteration.	 These	 tests	 are	 created	
ideally	through	collaboration	between	analysts,	testers,	end	users	and	developers.	
Acceptance	 test	 cards	are	 ideally	 created	during	 sprint	planning	or	 iteration	planning	
meeting,	before	development	begins	so	that	the	developers	have	a	clear	idea	of	what	to	
develop.	 Sometimes	 acceptance	 tests	 may	 span	 multiple	 stories	 (that	 are	 not	
implemented	in	the	same	sprint)	and	there	are	different	ways	to	test	them	out	during	
actual	 sprints.	One	popular	 technique	 is	 to	mock	external	 interfaces	or	data	 to	mimic	
other	stories	which	might	not	be	played	out	during	iteration	(as	those	stories	may	have	
been	relatively	lower	business	priority).	A	user	story	is	not	considered	complete	until	the	
acceptance	tests	have	passed.	Tools	such	as	Cucumber	,	JBehave	,	Concordion		and	Twist		
allow	 the	 documentation	 of	 acceptance	 criteria	 in	 natural	 language	 and	 then	 in	 turn	
writing	of	software	code	for	the	execution	of	the	specific	testing.	
		
Specifically	for	RAINBOW,	the	UATs	(user	acceptance	tests)	that	will	be	performed	will	
be	 driven	 by	 the	 needs	 of	 the	 Use	 Cases	 as	 described	 in	 D1.3.	 By	 adhering	 to	 the	
specifications	described,	the	RAINBOW	platform	will	be	able	to	fulfil	the	needs	and	the	
specific	scenarios	on	which	the	use	cases	are	built	upon.	

3.5 Requirement Coverage

The	 Integration	 and	 Testing	 plan	 is	 also	 taking	 into	 account	 the	 coverage	 of	 the	
requirements	 of	 the	 RAINBOW	 project,	 as	 they	 have	 been	 shaped	 by	 the	 Use	 Case	
scenarios.	 These	 requirements	 are	 currently	 being	 finalized	 and	will	 be	 presented	 in	
D1.3,	and	as	such	will	not	be	mentioned	in	detail	here.	Effort	will	be	put	towards	ensuring	
the	 requirements	 are	 satisfied,	 as	per	 ISO/IEC	25010:2011(en)	 standard	 for	 Software	
Quality.	In	short,	this	entails	the	following:	

• Functional	Sustainability	
o Functional	Completeness	
o Functional	Correctness	
o Functional	Appropriateness	

• Performance	Efficiency	
o Time	Behaviour	
o Resource	Utilization	
o Capacity	

• Compatibility	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 26 of 39

Copyright © Rainbow Consortium Partners 2020

o Co-existence	
o Interoperability	

• Usability	
o Learnability	
o Operability	
o User	Error	Protection	
o User	Interface	Aesthetics	
o Accessibility	

• Reliability	
o Maturity	
o Availability	
o Fault	Tolerance	
o Recoverability	

• Security	
o Confidentiality	
o Integrity	
o Non-repudiation	
o Authenticity	
o Accountability	

• Maintainability	
o Modularity	
o Reusability	
o Analysability	
o Modifiability	
o Testability	

• Portability	
o Modifiability	
o Installability	
o Replaceability

By	 adhering	 to	 all	 those	 principles,	 with	 individual	 focus	 on	 the	 functional	 and	 non-
functional	 requirements	 as	 expressed	 through	 the	 Use-case	 scenarios,	 the	 RAINBOW	
platform	will	guarantee	the	quality	of	its	individual	components	and	itself	as	a	whole.	

3.6 Emulation of Cloud – Fog Resources

As	the	Fog	environment	is	of	particular	interest	in	RAINBOW,	appropriate	mechanisms	
for	testing	functionality	and	compatibility	for	services	deployed	to	the	fog	network	have	
to	be	in	place.	As	such,	Fogify	has	been	chosen	for	the	RAINBOW	Fog	testbed.		
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 27 of 39

Copyright © Rainbow Consortium Partners 2020

Fogify3	 is	an	open-source	 framework,	 initially	developed	and	maintained	by	UCY,	 that	
enables	 developers	 to	 quickly	 model	 fog	 deployments	 and	 perform	 large-scale,	
repeatable	 and	 reproducible	 experimentation	 of	 data-intensive	 applications	 by	
encompassing	description	abstractions	for	modeling	fog	resources,	network	capabilities	
and	 runtime	 scaling	 actions.	 In	 turn,	 developers	 can	 create	 their	 own	 experiment	
scenarios	(the	SDK	even	works	in	Jupyter	Notebooks)	where	they	can	define	faults	(e.g.,	
a	 sudden	 increase/drop	 in	 load/latency,	 a	 node	 is	 unresponsive,	 etc)	 and	monitoring	
metrics.	Fogify	accepts	and	extends	Docker	Compose	descriptions	so	developers	do	not	
need	 to	 perform	 huge	 workarounds	 to	 get	 fog/cloud-enabled	 applications	 that	 are	
Docker-ized	to	work	with	Fogify.	When	a	user	is	satisfied	with	the	tests	conducted,	then	
he/she	may	move	forward	to	a	production	deployment	in	a	fog	environment	without	the	
need	to	change	any	coded	artifacts	or	deployment	configurations.	
	
By	taking	advantage	of	the	Fogify	emulator,	the	RAINBOW	research	team	can	rapidly	set	
up	fog-enabled	testbeds	and	evaluate	coded	use-case	without	wasting	time	in	deploying,	
configuring	and	maintaining,	across	geo-distributed	realms,	fog	resources	and	networks.	
Therefore,	this	will	allow	the	RAINBOW	platform	to	be	thoroughly	tested	in	a	variety	of	
different	environments	based	on	the	fog	computing	paradigm,	ensuring	interoperability,	
functionality	and	scalability	as	the	development	effort	progresses,	while	also	providing	
the	component	developers	and	the	platform	as	a	whole	with	performance	indicators	to	
assure	the	performance	efficiency	of	the	platform,	as	mentioned	earlier.	

	
3	 Fogify:	 A	 Fog	 Computing	 Emulation	 Framework.	 Moysis	 Symeonides,	 Zacharias	 Georgiou,	 Demetris	
Trihinas,	 George	 Pallis,	 Marios	 Dikaiakos,	 "Proceedings	 of	 the	 5th	 ACM/IEEE	 Symposium	 on	 Edge	
Computing"	(SEC	’20),	San	Jose,	CA,	USA	Association	for	Computing	Machinery,	New	York,	NY,	USA,	2020	
https://ucy-linc-lab.github.io/fogify/	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 28 of 39

Copyright © Rainbow Consortium Partners 2020

4 Continuous Integration and Quality Assurance

Implementation Aspects

As	already	described	 in	D1.2	 -	RAINBOW	Reference	Architecture,	RAINBOW	follows	a	
specific	 approach	 in	 order	 to	 implement	 the	 mechanisms	 that	 constitute	 RAINBOW	
framework.	RAINBOW	mechanisms’	development	is	a	continuous	process	which	contains	
all	required	discrete	steps	that	re-assure	quality	during	the	entire	lifetime	of	the	project.	
This	process	can	be	represented	as	a	virtual	circle	that	contains	the	following	functional	
components	 a)	 code	development,	 b)	 version	 control	 system	 (pushing	 the	 changes	 to	
Gitlab),	c)	CICD	actions	(building	and	forwarding	artefacts	for	further	actions)	d)	quality	
assurance	of	generated	code,	e)	persistent	storage	of	generated	builds	 in	a	dockerized	
format,	e)	issue/bug	tracking	and	f)	deployment	to	production.	Additionally,	Bazel	was	
also	considered	to	be	used	as	the	standard	for	build	procedures	for	the	components	in	
the	project	but	was	later	replaced	by	Maven	for	the	majority	of	the	components,	while	
also	leaving	some	room	for	individual	developer	choice	for	their	component	in	order	to	
speed	up	development	due	to	familiarity	and	knowledge	of	other	technologies.	
Each	 part	 of	 the	 circle	 is	 supported	 by	 mature	 tools	 that	 are	 already	 setup	 and	
interoperate	smoothly.	These	tools	are	depicted	on	Figure	2.	More	specifically	these	tools	
are:	 Gitlab	 for	 	 a)	 version	 control,	 b)	 continuous	 integration	 &	 development	 c)	 for	
issue/bug	tracking	c)	Sonar	for	code	quality	assurance	and	d)	Gitlab	Container	Registry	
for	docker	image	management.	For	the	purpose	of	RAINBOW,	the	software	described	will	
be	hosted	on	a	managed	Kubernetes	cluster,	to	ensure	scalability	and	redundancy	of	the	
CICD	operations.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 29 of 39

Copyright © Rainbow Consortium Partners 2020

	
Figure	2	Development	Lifecycle	

	

4.1 Version Control System – Gitlab

As	 already	 presented	 above,	 the	 consortium	 has	 selected	 Gitlab	 as	 the	 primary	 VCS	
system.	The	RAINBOW	project	source	code	will	be	organised	in	multiple	repositories:	

• rainbow-scheduler	contains	all	source	code	of	the	RAINBOW	Scheduler,	
• rainbow-orchestration	contains	all	source	code	of	the	RAINBOW	Orchestrator,	
• rainbow-analytics	contains	all	source	code	of	the	RAINBOW	analytics	service	
• rainbow-monitoring	contains	the	source	code	of	the	RAINBOW	monitoring	applications,	
• rainbow-storage	 contains	 all	 the	 source	 code	 and	 configurations	 of	 the	 RAINBOW	

storage	mechanisms,	
• and	rainbow-attestation,	which	contains	all	the	source	code	of	the	RAINBOW	attestation	

mechanisms.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 30 of 39

Copyright © Rainbow Consortium Partners 2020

	
Figure	3	Gitlab	Repositories	

For	now,	only	the	basic	repository	is	available	via	a	Gitlab	repository,	which	is	located	
here:	https://gitlab.com/rainbow-project1/	(see	Figure	3)	and	its	access	is	limited	to	the	
consortium	developers	 for	 the	 time	being.	 	After	 the	 finalization	of	 the	project	 the	
consortium	will	open	the	Gitlab	repositories	which	will	contain	all	mechanisms.	
	

4.2 Build Distribution & Containerization – Docker/K8s

Over	the	past	few	years,	container	technologies	have	been	widely	adopted	by	enterprises	
and	 SMEs,	 with	 significant	 benefits	 for	 DevOps	 teams.	 Such	 benefits	 include	 smaller	
memory	footprints	for	user	applications,	faster	deployment	and	bootstrapping	times	and	
improved	 isolation	 between	 containerized	 applications	 that	 share	 the	 same	 host	
resources.	Among	the	multiple	container	technologies	that	have	emerged,	the	one	with	
the	biggest	market	share	and	the	widest	adoption	is	Docker.	In	deliverable	D1.2,	Docker	
has	been	extensively	described.		
		
In	addition	 to	Docker	and	docker	 images,	which	are	 the	 file	 templates	 that	describe	a	
docker	container	deployment,	another	significant	development	over	the	past	few	years	
has	been	the	advent	of	orchestration	technologies,	such	as	Kubernetes.	Kubernetes	offers	
a	 complete	 solution	 to	 orchestrate,	 manage,	 deploy	 and	 automate	 sets	 of	 docker	
containers	in	clusters.		
		
Regarding	RAINBOW,	and	specifically	the	CICD	lifecycles	of	the	project,	docker	images	
offer	 a	 substantial	 benefit	 allowing	 developers	 of	 components	 to	 focus	 on	 the	
development	 of	 features	 without	 having	 to	 worry	 about	 compatibility	 with	 specific	
installations.	 Furthermore,	 Kubernetes	 allows	 the	 deployment	 of	 the	 aforementioned	
images	in	clusters	which	can	be	scaled	automatically	if	need	be.			
		
Finally,	Kubernetes	can	also	be	utilized	to	handle	the	workload	of	the	CICD	pipelines	as	
described	 above.	 By	 using	 Kubernetes	 enabled	 clusters	 for	 running	 Gitlab	 Pipeline	
runners,	builds	can	be	performed	in	a	homogenous	scalable	environment	guaranteeing	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 31 of 39

Copyright © Rainbow Consortium Partners 2020

compatibility	 and	 availability	 of	 resources	 through	 the	 automated	 scaling	 capabilities	
offered	by	the	clusters.	
	

4.3 Continuous Integration – Gitlab Pipelines

The	 deployment	 of	 RAINBOW	 is	 based	 on	 a	 Continuous	 Integration	 process.	
Continuous	 Integration	 (CI)	 is	 a	 software	 engineering	 approach	 in	which	 teams	 keep	
producing	valuable	software	in	short	cycles	and	ensure	that	the	software	can	be	reliably	
released	at	any	time.	It	 is	used	in	software	development	to	automate	and	improve	the	
process	of	 software	 integration.	Continuous	 integration	basis	 is	a	 series	of	 techniques	
designed	 to	 ensure	 that	 code	 can	 be	 rapidly	 and	 safely	 deployed	 to	 production	 by	
delivering	 every	 change	 to	 a	 production-like	 environment	 and	 ensuring	 proper	
functionalities	through	automated	testing.	
According	to	this	approach,	every	change	is	delivered	to	a	staging	environment	using	

complete	automation,	so	that	it	is	guaranteed	that	the	created	application	is	deployable	
at	any	time	and	can	be	deployed	to	production	with	the	push	of	a	button.

Continuous	 Integration	 is	 also	 another	 option	 that	 is	 even	 more	 automated.	 In	
Continuous	 Integration,	 every	 change	 that	 passes	 the	 automated	 tests	 is	 deployed	 to	
production	 automatically.	 For	 the	 RAINBOW	 Framework,	 the	 final	 decision	 for	
deployment	to	production	is	done	manually,	in	order	to	have	total	control	of	the	releases	
that	 go	 into	 production,	 so	 Continuous	 Delivery	 is	 performed.	 The	 overview	 of	 this	
process	that	will	be	followed	in	order	to	deploy	a	new	version	of	RAINBOW	Framework	
to	production	is	presented	in	Figure	4.

	
Figure	4	Continuous	Delivery	in	the	RAINBOW	Framework	

The	whole	process	is	automated	except	two	basic	manual	steps.	The	starting	point	of	
this	process	is	the	commit	of	the	code	by	the	developer.	For	every	commit	made,	a	git	
hook	 is	 configured	 to	 start	 the	Automated	Build	 –	Continuous	 Integration	with	Gitlab	
Pipelines.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 32 of 39

Copyright © Rainbow Consortium Partners 2020

These	pipelines	are	configured	to	build	new	releases	of	RAINBOW	Framework	(and	its	
components)	in	an	automated	manner	on	a	staging	environment.	Semi-automated	(after	
manual	approval)	deployment	to	production	environment	is	also	configured.	Automated	
testing	has	also	been	configured	with	usage	of	unit	tests	for	every	build	made	with	Gitlab.	
Unit	testing	is	a	task	that	every	artefact	developer	is	responsible	for	and	is	performed	
before	 the	 integration	 of	 the	 mechanism	 in	 the	 RAINBOW	 Framework.	 Beyond	
integration,	 functional	 tests	will	also	be	created	 for	several	main	 functionalities	of	 the	
RAINBOW	Framework	in	order	to	ensure	its	proper	functioning.	
The	purpose	of	the	Continuous	Integration	(CI)	platform	is	twofold.	On	the	one	hand,	

the	 latest	 valid	 snapshot	 is	 always	 deployed	 to	 a	 specific	 server	 which	 is	 used	 for	
continuous	testing.	On	the	other	hand,	when	the	development	will	be	about	to	finish	the	
CI	 server	will	 operate	 as	 a	 pre-staging	 environment.	 This	 practically	means	 that	 any	
upgrades	 that	 will	 be	 released	 during	 the	 production	 phase	 will	 be	 performed	
automatically	through	Jenkins.		

This	 is	 extremely	 valuable,	 since	 in	 the	 RAINBOW	 project	 the	 entire	 development	
lifecycle	has	been	done	using	 industry-driven	 standards.	During	 the	build-process,	 all	
unit-tests	 are	 executed.	 This	 practically	 means	 that	 each	 release	 has	 a	 functional	
guarantee	regarding	its	stability.	However,	this	also	means	that	the	responsibility	of	the	
developers	is	high	since	the	test	coverage	is	under	their	jurisdiction.		

4.4 Source Code Evaluation – Sonar

Nowadays,	the	quality	measurement	of	software	development	has	become	increasingly	
important.	As	in	any	technological	project	in	scale,	there	is	a	need	for	a	way	to	measure	
the	quality	and	how	the	work	progresses,	when	different	people	have	different	access	to	
the	 source	 code.	 Although,	 quality	 is	 somewhat	 subjective	 attribute	 and	 understood	
differently	by	different	people,	an	 independent	organization,	 founded	by	 the	Software	
Engineering	Institute	at	Carnegie	Mellon	University	and	the	Object	Management	Group,	
called	Consortium	for	IT	Software	Quality	(CISQ4)	has	defined	a	set	of	software	structural	
quality	characteristics.	In	the	“House	of	Quality”	model,	these	are	"What’s"	that	need	to	
be	achieved:	

• Reliability:	An	attribute	of	structural	solidity.	Reliability	measures	the	level	of	risk	and	
the	likelihood	of	potential	application	failures.	It	also	measures	the	defects	injected	due	
to	modifications	made	to	the	software.	

• Efficiency:	 The	 source	 code	 is	 the	 element	 that	 ensures	 high	 performance	 once	 the	
application	is	in	run-time	mode.	Efficiency	is	especially	important	for	applications	in	high	
execution	 speed	 environments	 such	 as	 algorithmic	 or	 transactional	 processing	where	
performance	and	scalability	are	paramount.	

• Security:	A	measure	of	the	probability	of	potential	security	breaches	due	to	poor	coding	
practices	or	architecture.	This	kind	of	breaches	increases	the	risk	of	critical	vulnerabilities	
that	can	damage	a	business.	

• Maintainability:	Maintainability	includes	the	concept	of	adaptability	and	portability.	It	is	
very	 important	 to	measure	 the	maintainability	 for	mission-critical	applications,	where	

	
4	http://it-cisq.org/	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 33 of 39

Copyright © Rainbow Consortium Partners 2020

each	change	is	driven	by	tight	schedules	and	is	important	to	remain	responsive	during	
the	changes.	It	is	very	crucial	to	keep	maintenance	costs	under	control.	

• Size:	 The	 sizing	 of	 source	 code	 is	 a	 software	 characteristic	 that	 obviously	 impacts	
maintainability.	

	
Based	 on	 the	 principles	 described	 above,	 the	 development	 lifecycle	 relies	 on	 the	
SonarQube	 tool	 that	 performs	 the	 quality	 testing	 at	 the	 source	 level.	 	 SonarQube	 is	
configured	 to	 perform	 a	 set	 of	 analyses	 such	 as	 static	 code	 analysis,	 analysis	 of	 best	
practices,	 analysis	 of	 conventions,	 etc.	 Specific	 reports	 regarding	 the	
blocking/critical/major	 issues	 are	 presented	 along	 with	 several	 indications	 of	
architectural	quality	(duplications,	reusability,	testing	coverage	etc.).	
A	critical	indicator	regarding	the	quality	is	the	technical	depth	that	attempts	to	quantify	
the	number	of	days	that	are	required	in	order	to	make	a	specific	snapshot	a	proactive	
release.	
At	this	point	it	should	be	noted	that	the	emphasis	of	the	development	team	is	not	to	tackle	
every	non-technical	quality	issue	that	is	raised	by	SonarQube	but	to	finish	the	entire	set	
of	features	that	are	required	for	the	first	release.	
	
Having	 in	mind	 the	 above,	 the	 source	 code	 implemented	 in	 the	 context	 of	 RAINBOW	
project	will	 be	 examined	 by	 Sonar	 and	 the	 results	will	 be	 presented	 during	 the	 next	
months	 in	D5.2	–	RAINBOW	Framework	and	Unified	Dashboard	Early	Release,	D5.3	–	
RAINBOW	Framework	Second	Release	and	D5.4	RAINBOW	Framework	final	release.	
	

4.5 Issue Tracking – Gitlab

As	 already	 mentioned	 above,	 GitLab	 Issues	 is	 the	 issue/bug	 tracking	 toolset	 that	
RAINBOW	 project	 uses.	 The	 GitLab	 issues	 of	 the	 RAINBOW	 Project	 are	 located	 at	
https://gitlab.com/groups/rainbow-project1/-/issues	 (see	 Figure	 5),	 whose	 access	 is	
limited	to	the	consortium	developers	for	the	time	being.	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 34 of 39

Copyright © Rainbow Consortium Partners 2020

	
Figure	5	Gitlab	Issues	

4.6 Continuous Deployment

As	 already	 mentioned,	 Gitlab	 is	 used	 for	 the	 majority	 of	 Continuous	 Integration	 and	
Continuous	Deployment	operations.	Each	time	a	new	version	of	the	code	is	pushed	to	the	
respective	repository,	either	via	committing	updates	to	the	master	branch	directly,	or	by	
merging	branches	onto	the	master	branch,	a	new	CI/CD	pipeline	is	spawned.		
Each	repository	hosted	has	its	own	autonomous	CICD	functions,	which	are	executed	by	
privately	 hosted	 Gitlab	 Runners.	 Figure	 6	 depicts	 the	 current	 runners	 (from	 GitLab)	
inside	the	Kubernetes	Management	dashboard.	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 35 of 39

Copyright © Rainbow Consortium Partners 2020

	
Figure	6	Spawned	Gitlab	Runners	on	Kubernetes	Dashboard	

	
Pipelines	 are	 multi-task/stateless	 processes	 that	 perform	 a	 lot	 of	 tasks.	 Each	 task	 is	
executed	in	the	aforementioned	Kubernetes	workers,	which	are	created	as	needed,	per	
the	committal	of	code	by	a	developer.	It	should	be	noted	that	GitLab	offers	an	out-of-the	
box	automatic	generation	of	pipeline	based	on	the	introspection	of	the	source	code.	This	
feature	is	called	AutoDevOps;	this	feature	was	not	used	due	to	its	lack	of	customizability	
and	 the	 fact	 that	 it	 was	 skipping	 or	 substituting	 steps	 of	 the	 CICD	 process	 as	 was	
described	in	previous	sections.	
	
Instead,	a	manual	definition	of	the	CI/CD	tasks	has	been	performed	using	the	gitlab-ci	
scripting	 mechanism,	 using	 a	 standard	 .yaml	 format.	 This	 mechanism	 allows	 the	
definition	 of	 arbitrary	 pipelines	 based	 on	 the	 projects’	 requirements.	 A	 graphical	
representation	of	a	RAINBOW	pipeline	is	depicted	on	Figure	7.	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 36 of 39

Copyright © Rainbow Consortium Partners 2020

	
Figure	7	Indicative	Execution	of	pipelines	

As	is	shown,	the	pipeline	consists	of	7	discrete	tasks	that	perform	the	operations	needed	
throughout	the	CICD	lifecycle.	Tasks	are	organized	in	Stages,	which	are	groups	of	tasks	
that	 can	 be	 executed	 in	 parallel.	 The	 current	 implementation	 of	 the	 RAINBOW	 CICD	
employs	5	stages,	since	build	and	test	tasks	can	be	fully	parallelized.	
	
The	 source	 code	 consists	 of	multiple	 commands	 that	 are	 executed	 sequentially	 on	 an	
instance	of	an	operating	system	that	is	spawned	on	Kubernetes	(Gitlab	Runner)	per	task	
execution.		These	runners	are	configured	to	use	the	Alpine	Linux	image5,	mainly	because	
of	its	small	footprint.	The	build	tasks,	as	seen	on	Figure	8,		rely	on	Maven	and	NPM	tools	
that	 are	 on-the-fly	 installed	 in	 the	 stateless	 kubernetes	 workers.	 Additionally,	
environmental	variables	are	supported	by	the	Gitlab	CI	infrastructure,	and	are	used	for	
propagating	necessary	private	information	(e.g.	hidden	passwords,	application	secrets,	
etc.).	
	

	
5	https://hub.docker.com/_/alpine	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 37 of 39

Copyright © Rainbow Consortium Partners 2020

	
Figure	8	Build	Tasks	

Figure	9,	depicts	part	of	the	source	code	of	the	testing	script	while	Figure	10	shows	part	
of	 the	 quality	 control	 script.	 Individual	 repositories	 may	 need	 different	 build	 code	
depending	on	the	underlying	technologies	they	use.	
	

	
Figure	9	Testing	Tasks	

	

	
Figure	10	Quality	Tasks	

		

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 38 of 39

Copyright © Rainbow Consortium Partners 2020

As	mentioned	earlier,	quality	control	is	achieved	using	the	Sonar	analysis	engine.	Sonar	
is	able	to	perform	various	types	of	analysis	in	order	to	infer	(see	Figure	11),	bugs,	security	
vulnerabilities,	code	smells	and	documentation/testing	coverage.	
	
	

	
Figure	11	Indicative	Sonar	output	

The	 last	 two	 tasks,	 that	 are	 executed	 only	 if	 all	 the	 previous	 stages	 are	 successfully	
completed,	are	the	packaging	and	staged	deployment.	These	are	also	configured	using	the	
gitlab-ci	scripting	mechanism.	
	
	

	 	

	 Project	No	871403	(RAINBOW)	

	 D5.1	–	Technical	Integration	and	Testing	Plan	
	 Date:	31.12.2020	
	 Dissemination	Level:	PU	

	

Page 39 of 39

Copyright © Rainbow Consortium Partners 2020

5 Conclusions

The	current	deliverable	aimed	to	document	the	activities	of	Task	5.1	entitled	“Technical	
Integration	Points	and	Testing	Plan”	in	the	frame	of	Work	Package	5.	More	specifically,	
the	document	aimed	to:	
	

• clarify	the	core	technologies	that	have	been	selected	per component	that	comprises	the	
RAINBOW	architecture,

• Collect & highlight the communication patterns that has been established among the
components,

• discuss	about	integration	and	quality	assurance	planning	that	could	be	used.

These	activities	cover	the	objectives	of	WP5	and	more	specifically:	a)	to	(pro-)	actively	
handle	software	components	integration	issues	through	the	design	of	a	detailed,	overall	
technical	 architecture,	 and	 the	 software	 integration	 and	 testing	 planning;	 and	 b)	 to	
integrate	 the	 different	 software	 components	 that	 are	 developed	 in	 the	 core	 technical	
work	packages	WP2,	WP3	and	WP4.	
	
Testing	also	becomes	important	to	ensure	the	quality	of	the	delivery,	both	at	a	submodule	
level	and	as	a	whole	integrated	system.	For	this	reason,	in	this	Integration	and	Testing	
plan,	 we	 have	 opted	 for	 a	 combined	 approach	 between	 Top	 Down	 and	 Bottom	 Up	
techniques,	 resulting	 in	 a	 hybrid	 approach.	 With	 this,	 components	 are	 added	 in	 a	
controlled	way	and	tested	repetitively	before	the	full	integration	and	the	behavior	of	the	
individual	parts	is	clearer.				
	
Additionally,	this	document	examined	how	the	testing	&	integration	planning	will	aim	to	
cover	the	various	requirements	of	the	project	and	its’	use	cases,	with	both	high	level	goals	
and	targeted	testing	for	specific	environments,	using	tools	such	as	Fogify.		
	
The	key	output	of	the	current	work	has	been	the	definition	of	a	testing	methodology	for	
the	previous	list	of	components	plus	the	technologies	to	be	utilised	to	carry	on	with	such	
tests,	 paying	 special	 attention	 to	 the	 integration	 plan	 and	 the	 special	 conditions	
surrounding	the	RAINBOW	platform.	
	
Future	work	in	the	project	will	provide	further	specification	of	the	different	parts	of	the	
platform	which	will	be	due	by	the	end	of	June	2021).	
	
	

